


La chaudière des réacteurs à eau sous pression



La chaudière des réacteurs à eau sous pression

GÉNIE ATOMIQUE

La chaudière des réacteurs à eau sous pression

Pierre Coppolani, Nathalie Hassenboehler, Jacques Joseph, Jean-François Petetrot, Jean-Pierre Py, Jean-Sébastien Zampa

17, avenue du Hoggar Parc d'activités de Courtabœuf, BP 112 91944 Les Ulis Cedex A, France Illustration de couverture : Photo de gauche : départ d'un générateur de vapeur de 900 Mwe de l'usine Framatome ANP de Chalon. © Quatrain René, Framatome ANP. Photo de droite : représentation du réacteur EPR. © Image et process pour Framatome ANP.

ISBN : 2-86883- 741-7

Tous droits de traduction, d'adaptation et de reproduction par tous procédés, réservés pour

tous pays. La loi du 11 mars 1957 n'autorisant, aux termes des alinéas 2 et 3 de l'article 41, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective », et d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (alinéa 1 er de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du code

pénal.

© EDP Sciences 2004

Introduction à la collection « Génie Atomique »

Au sein du Commissariat à l'énergie atomique (CEA), l'Institut national des sciences et techniques nucléaires (INSTN) est un établissement d'enseignement supérieur sous la tutelle du ministère de l'Éducation nationale et du ministère de l'Industrie. La mission de l'INSTN est de contribuer à la diffusion des savoir-faire du CEA au travers d'enseignements spécialisés et de formations continues, tant à l'échelon national, qu'aux plans européen et international.

Cette mission reste centrée sur le nucléaire, avec notamment l'organisation d'une formation d'ingénieur en « Génie Atomique ». Fort de l'intérêt que porte le CEA au développement de ses collaborations avec les universités et les écoles d'ingénieurs, l'INSTN a développé des liens avec des établissements d'enseignement supérieur aboutissant à l'organisation, en co-habilitation, de trente-huit enseignements de 3° cycle (DEA et DESS). À ces formations s'ajoutent les enseignements des disciplines de santé : les spécialisations en médecine nucléaire et en radiopharmacie, ainsi qu'une formation destinée aux physiciens d'hôpitaux.

La formation continue constitue un autre volet important des activités de l'INSTN, lequel s'appuie aussi sur les compétences développées au sein du CEA et chez ses partenaires industriels.

Dispensé dès 1956 au CEA Saclay, où ont été bâties les premières piles expérimentales, la formation en « Génie Atomique » (GA) l'est également depuis 1976 à Cadarache où a été développée la filière des réacteurs à neutrons rapides. Depuis 1958, le GA est enseigné à l'École des applications militaires de l'énergie atomique (EAMEA) sous la responsabilité de l'INSTN.

Depuis sa création, l'INSTN a diplômé plus de 4 000 ingénieurs que l'on retrouve aujourd'hui dans les grands groupes ou organismes du secteur nucléaire français : CEA, EDF, Framatome, Technicatome, Cogema, Marine nationale. De très nombreux étudiants étrangers provenant de différents pays ont également suivi cette formation.

Cette spécialisation s'adresse à deux catégories d'étudiants : civils et militaires. Les étudiants civils occuperont des postes d'ingénieurs d'études ou d'exploitation dans les réacteurs nucléaires, électrogènes ou de recherches, ainsi que dans les installations du cycle du combustible. Ils pourront évoluer vers des postes d'experts dans l'analyse du risque nucléaire et de l'évaluation de son impact environnemental. La formation de certains officiers des sous-marins et porte-avions nucléaires français est dispensée par l'EAMEA.

Le corps enseignant est formé par des chercheurs du CEA, des experts de l'Institut de radio-protection et de sûreté nucléaire (IRSN), des ingénieurs de l'industrie (EDF, AREVA, ...) Les principales matières sont : la physique nucléaire et la neutronique, la thermohydraulique, les matériaux nucléaires, la mécanique, la protection radiologique, l'instrumentation nucléaire, le fonctionnement et la sûreté des réacteurs à eau sous pression (REP), les filières et le cycle du combustible nucléaire. Ces enseignements dispensés sur une durée de six mois sont suivis d'un projet de fin d'étude, véritable prolongement de la formation réalisé à partir d'un cas industriel concret, se déroulent dans les centres de recherches du CEA, des groupes industriels (EDF, Framatome, Technicatome, etc.) ou à l'étranger (États-Unis, Canada, Royaume-Uni, ...) La spécificité de cette formation repose sur la large place consacrée aux enseignements pratiques réalisés sur les installations de l'INSTN (réacteur Ulysse, simulateurs de REP, laboratoires de radiochimie, etc.)

Aujourd'hui, en pleine maturité de l'industrie nucléaire, le diplôme d'ingénieur en « Génie Atomique » reste sans équivalent dans le système éducatif français et affirme sa vocation : former des ingénieurs qui auront une vision globale et approfondie des sciences et techniques mises en œuvre dans chaque phase de la vie des installations nucléaires, depuis leur conception et leur construction jusqu'à leur exploitation puis leur démantèlement.

L'INSTN s'est engagé à publier l'ensemble des supports de cours dans une collection d'ouvrages destinés à devenir des outils de travail pour les étudiants en formation et à faire connaître le contenu de cet enseignement dans les établissements d'enseignement supérieur français et européens. Édités par EDP Sciences, acteur particulièrement actif et compétent dans la diffusion du savoir scientifique, ces ouvrages sont également destinés à dépasser le cadre de l'enseignement pour constituer des outils indispensables aux ingénieurs et techniciens du secteur industriel.

Joseph Safieh Responsable général du cours de Génie Atomique

Table des matières

Partie I La production d'électricité nucléaire

Chapitre 1 : La centrale nucléaire

1.1 Dringing simplifié de fanctionnement	1 🗆
1.1. Principe simplifié de fonctionnement	15
1.1.1. Fonctionnement de la chaudière en puissance	15
1.1.2. Fonctionnement à puissance réduite	17
1.1.3. États d'arrêts	17
1.1.4. Démarrage de l'installation	19
1.2. Circuit secondaire eau/vapeur et production d'électricité	19
1.2.1. Circuit vapeur	21
1.2.2. Condenseur	22
1.2.3. Circuit d'eau alimentaire	22
1.2.4. Évacuation d'énergie	23
1.2.5. Circuit de réfrigération	23
1.3. Architecture générale d'une centrale	24
1.3.1. Bâtiments de l'îlot nucléaire	24
1.3.2. Architecture générale des îlots nucléaires	27
1.3.3. Bâtiments de l'îlot conventionnel	27
1.3.4. Évolution de conception de l'enceinte de confinement	27
Chapitre 2 : Contraintes de conception et d'exploitation des centrales	
2.1. Latitude de choix des principaux paramètres	29
2.1.1. Longueur du cycle de combustible	29
2.1.2. Rendement du cycle eau/vapeur	30
2.1.3. Taille du cœur	30
2.1.4. Pression primaire	31
2.2. Conception générale du cœur	35
2.2.1. Limites physiques du cœur	35
2.2.2. Modes de pilotage	37
2.3. Exigences d'exploitation venant du réseau	39

2.3.1. Exigences du réseau

2.3.2. Exigences au niveau des tranches nucléaires

39

40

Partie II Le combustible des REP

Cnapitre 3	: Conception et fabrication du combustible
	ion industrielle de la fabrication
	ception du combustible
	es de fabrication du combustible
3.1.3. Asse	mblage final
3.1.4. Sûret	té des opérations
3.1.5. Cont	trôles de fabrication
3.2. L'assembl	age et ses composants
3.2.1. Géoi	métrie de l'assemblage
3.2.2. Cara	ctéristiques de l'assemblage
3.2.3. Sque	elette de l'assemblage
3.2.4. Solli	citations et critères
3.2.5. Cara	ctéristiques des matériaux
3.3. Contrainte	es de conception des crayons
	portement du crayon sous irradiation
3.3.2. Critè	eres de conception
	lèles de comportement, outils de calcul et méthodes
	es de conception
	nples d'impact du comportement du combustible en réacteur
sur le	e fonctionnement de la chaudière
et amélior 4.2.1. Exen	du retour d'expérience : évolution des produits rations des performances du combustible
	ves d'évolution du combustible des REP
'	
Partie III I	Le circuit primaire
Chanitra E	. La housile primaire la suve et ses composants
-	: La boucle primaire, la cuve et ses composants
	éacteur
	nents de la cuve
	ériau de la cuve
	traintes de conception
	ations de fonctionnement
	nmages susceptibles d'affecter la cuve
	eillance de la cuve
	internes
5.3.1. Struc	tare des internes
5.3.2. Inter	faces internes – Assemblages combustibles

5.3.3. Interfaces internes supérieurs – Grappes de commande	97
	97
	00
	01
	01
•	03
·	03
	05
<u> </u>	06
ę ,	06
Chapitre 6 : Le pressuriseur	
6.1. Architecture du pressuriseur	07
	07
·	07
0	
8	09 10
1	11
6.2.4. Soupapes de décharge et de suréte	1 1
Chapitre 7 : Les groupes motopompes primaires	
7.1. Principe de fontionnement	15
7.1.1. Courbe caractéristique	15
	18
	18
	21
	21
	23
	23
,	24
	24
	24
•	26
· ·	26
·	26
	27
7.5. Domaine de fonctionnement	۷,
Chapitre 8 : Le générateur de vapeur	
8.1. Architecture des GV	29
8.2. Thermohydraulique des générateurs de vapeur	32
, , , , , , , , , , , , , , , , , , , ,	32
	33
	34
·	34
	36
	36
	37

6 Table des matières

8.4. Soupapes des générateurs de vapeur 8.4.1. Principe de fonctionnement 8.4.2. Fonctionnement en eau	137 137 140
Partie IV Les principaux systèmes fluides	
Chapitre 9 : Les systèmes auxiliaires	
9.1. Système de contrôle volumétrique et chimique (RCV) / Système d'appoint en eau et en bore (REA) 9.1.1. Éléments du système de contrôle volumétrique et chimique RCV 9.1.2. Éléments du système d'appoint en eau et en bore (REA) 9.1.3. Fonctionnement des circuits RCV/REA 9.2. Système de refroidissement du réacteur à l'arrêt (RRA) 9.2.1. Éléments du circuit RRA 9.2.2. Protection contre les surpressions à froid 9.2.3. Bilan thermique et dimensionnement 9.2.4. Fonctionnement du RRA 9.2.5. Transitoire de refroidissement de 180 °C à 60 °C Chapitre 10 : Les systèmes de sauvegarde 10.1. Système d'injection de sécurité (RIS) 10.1.1. Principes de conception du circuit 10.1.2. Éléments du RIS 10.1.3. Fonctionnement du RIS	143 144 151 158 158 160 161 164 167 167 168 170
10.1.4. Secours mutuel RIS/EAS 10.1.5. Système RIS des tranches de 900 MWe 10.2. Système d'alimentation en secours des générateurs de vapeur (ASG) 10.2.1. Éléments du système ASG 10.2.2. Fonctionnement 10.3. Système d'aspersion de l'enceinte (EAS) 10.3.1. Éléments du circuit EAS	175 177 180 181 182 182 183
10.3.2. Fonctionnement	184
11.1. Circuit eau-vapeur (VVP/ARE) 11.1.1. Groupe turboalternateur 11.1.2. Poste d'eau 11.2. Système de contournement de la turbine (GCT) 11.2.1. Éléments du système de contournement 11.2.2. Fonctionnement	185 185 187 190 190
Chapitre 12 : Les systèmes fluides support	
12.1. Système de réfrigération intermédiaire (RRI) 12.1.1. Éléments du RRI 12.1.2. Fonctionnement	195 195 198

12.2. Système d'eau brute secourue (SEC)	198
12.2.1. Éléments du circuit SEC	199
12.2.2. Fonctionnement	199
- 4 4	
Partie V Les alimentations électriques	
et le contrôle-commande	
Chapitre 13 : Les alimentations électriques	
13.1. Liaisons externes	203
13.1.1. Réseau principal	203
13.1.2. Réseau auxiliaire	203
13.2. Réseau interne de la tranche	203
13.2.1. Sources externes	204
13.2.2. Sources internes	204
13.2.3. Auxiliaires	204
13.3. Fonctionnement des alimentations électriques	205
13.3.1. Fonctionnement normal	205
13.3.2. Défaillance du réseau principal	205
Chapitre 14 : Les systèmes de régulation	
14.1. Moyens de régulation des besoins	211
14.1.1. Besoins d'un exploitant	211
14.1.2. Régulation turbine	216
14.2. Grandeurs réglées dans un réacteur REP et capteurs associés	218
14.2.1. Température moyenne primaire	219
14.2.2. Pression primaire	221
14.2.3. Niveau pressuriseur	221
14.2.4. Niveau dans les générateurs de vapeur	221
14.2.5. Autres grandeurs principales mesurées pour la régulation	
et capteurs associés	222
14.3. Principaux organes réglants	223
14.3.1. Grappes de contrôle	224
14.3.2. Vannes de contournement vapeur au condenseur	225
14.3.3. Vannes de décharge à l'atmosphère	225
14.3.4. Chaufferettes du pressuriseur	225
14.3.5. Aspersion pressuriseur	226
14.3.6. Vanne de charge (circuit de contrôle volumétrique et chimique)	226
14.3.7. Vannes réglantes du circuit d'eau alimentaire normale	227
14.3.8. Vannes réglantes des turbopompes alimentaires	227
14.4. Chaînes de régulation	227
14.4.1. Chaîne de régulation de température moyenne par les grappes	227
14.4.2. Chaîne de contrôle du contournement vapeur au condenseur	239
14.4.3. Chaîne de régulation des vannes de décharge à l'atmosphère	244
14.4.4. Chaîne de régulation de la pression dans le pressuriseur	245
14.4.5. Chaîne de régulation du niveau dans le pressuriseur	247
14.4.6. Chaîne de régulation du niveau dans les générateurs de vapeur	252

8 Table des matières

14.4.7. Chaîne de régulation de vitesse des turbopompes d'eau alimentaire	260
14.4.8. Chaîne de régulation de niveau dans la bâche alimentaire	261
et le condenseur (tranches CP2 et postérieures)	261
14.4.9. Chaîne de régulation de la pression de la bâche alimentaire (tranches CP2 et postérieures)	262
14.5. Fonctionnement d'une tranche en « grand transitoire » : l'îlotage	264
14.5.1. Le transitoire et ses enjeux	
14.5.2. Commentaires sur l'intervention des systèmes et l'évolution	264
des principaux paramètresdes principaux paramètres	265
14.5.3. Xénon et dilution	267
14.5.4. Recouplage de l'alternateur et remontée en puissance	269
14.5.4. Recouplage de l'alternateur et remontée en puissance	203
Chapitre 15 : Le système de protection	
15.1. Protections spécifiques et protections génériques	273
15.2. Arrêt automatique du réacteur et systèmes de sauvegarde	274
15.2.1. Système d'arrêt automatique du réacteur (AAR)	274
15.2.2. Système d'injection de sécurité (RIS ou IS)	274
15.2.3. Aspersion enceinte (EAS)	275
15.2.4. Alimentation de secours des générateurs de vapeur (ASG)	275
15.2.5. Autres actions commandées par le système de protection	275
15.3. Protections génériques	275
15.3.1. Capteurs associés aux protections génériques	276
15.3.2. Dimensionnement des seuils de surpuissance linéique	276
15.3.3. Dimensionnement des chaînes de Rapport de Flux	
Thermique Critique	276
15.3.4. Effets dynamiques	276
15.3.5. Alarmes et arrêt automatique du réacteur	277
15.3.6. Limites des protections génériques	277
15.4. Protections spécifiques du cœur : chaînes de protection nucléaire	277
15.4.1. Instrumentation	278
15.4.2. Recouvrement des gammes d'instrumentation	278
15.4.3. Seuils	278
15.5. Protections spécifiques du réacteur en cas de brèche primaire	278
15.5.1. Signaux primaires déclenchant l'arrêt automatique du réacteur	279
15.5.2. Signaux primaires déclenchant la mise en service	
de l'injection de sécurité	279
15.5.3. Cas des signaux issus des conditions dans l'enceinte	280
15.6. Protections spécifiques du réacteur en cas de brèche secondaire	281
15.6.1. Transitoires de RTV et risques pour le primaire	281
15.6.2. Actions requises	281
15.6.3. Signal d'injection de sécurité par basse pression vapeur	282
15.6.4. Nécessité d'autres signaux pour couvrir tout le spectre des tailles de brèche	283
15.6.5. Dimensionnement des seuils, brèches interfaces et spectre de brèche	284
15.7. Conclusion sur le système de protection	285
Annexe	287
	-0/

Auteurs

Pierre COPPOLANI, Docteur Ingénieur, diplômé de l'École centrale des arts et manufactures, a commencé sa carrière à Framatome à concevoir les systèmes de régulation et de protection des réacteurs. Affecté depuis à la division Equipements, il supervise les études relatives à la robinetterie des nouvelles centrales EPR.

Nathalie HASSENBOEHLER, ingénieur diplômée de l'École nationale supérieure de chimie de Paris, travaille à Framatome-ANP dans le domaine de la conception des circuits des tranches REP, en France et à l'Export, dont celles de Ling Ao (Chine). Elle participe aujourd'hui au projet EPR.

Jacques JOSEPH, physicien de formation, a participé comme expert pour Framatome ANP à la R&D de la physique du combustible. Il participe dans ce domaine à la capitalisation des connaissances et à la formation.

Jean-François PETETROT, ingénieur diplômé de l'École supérieure d'électricité, travaille à Framatome-ANP dans le domaine des études pour le fonctionnement normal des tranches REP.

Jean-Pierre PY, ingénieur diplômé de l'École supérieure d'électricité, a participé au démarrage du premier REP Français (Chooz A, 300 MWe) ainsi qu'à ceux des premiers REP Américains de 800 MWe (Surry units 1&2). Il est chargé du développement de produits nouveaux dans le secteur Réacteurs.

Jean-Sébastien ZAMPA, ingénieur diplômé de l'École Polytechnique a débuté sa carrière à Framatome-ANP dans le domaine des études du fonctionnement accidentel des tranches REP. Il occupe aujourd'hui la fonction de chef de projet et d'ingénieur d'affaire pour des études et des travaux d'améliorations de la sûreté et des performances de centrales en Chine et en Afrique du Sud.

Remerciements

Les auteurs remercient toutes les personnes qui ont contribué à la réalisation de cet ouvrage. Ils remercient également les auteurs de certains dessins et photographies pour leur autorisation de publication pour illustrer cet ouvrage, notamment l'EPRI pour l'aimable autorisation de publier la figure 2.9.

Les auteurs remercient enfin leurs collègues de Framatome-ANP des Directions Ingénierie et Services et Conception et Ventes du Combustible qui ont accepté de relire le document et de faire toutes les suggestions utiles à sa bonne qualité technique.

Nota :

Sauf exception, les données et illustrations figurant dans ce livre sont celles des chaudières équipant les centrales REP de 1300MWe

Le critère de dimensionnement est déterminé par ce découplage : quelle que soit la pression secondaire initiale, le signal de basse pression vapeur avancée doit intervenir avant 3 secondes.

Le dimensionnement de ce module a amené au même choix de paramètres sur l'ensemble des paliers 900, 1 300 et 1 450.

On retient $\tau_1 = 50$ s et $\tau_2 = 5$ s.

On peut considérer qu'à court terme (si $t < \tau_1$ et $t < \tau_2$), ce module équivaut à la multiplication par 10 (= τ_1 / τ_2) de la pente de la dépressurisation.

En fait, pour la rupture d'une ligne vapeur principale, le signal est atteint en moins de 1 s au lieu des 3 s requises.

La prise en compte des conservatismes et règles d'études du rapport de sûreté permet de garantir l'isolement vapeur effectif à 10 s et un plein débit d'IS à 20 s.

15.6.4. Nécessité d'autres signaux pour couvrir tout le spectre des tailles de brèche

15.6.4.1. Détection des petites brèches secondaires

Les brèches de plus petites tailles conduisent à des dépressurisations moins rapides. Si cela représente un avantage du point de vue de la sévérité de la thermohydraulique de l'accident, une plus petite brèche a pour inconvénient de retarder l'arrivée du signal de basse pression vapeur avancée.

Au-dessous d'une certaine taille de brèche, le signal de basse pression vapeur n'est plus atteint dans un délais raisonnable.

À noter: sur le palier 900, l'IS est provoqué par le signal de basse pression vapeur avancée coïncidant avec un haut débit dans une ligne vapeur. Au-dessous d'une certaine taille de brèche, ce second signal n'est jamais atteint. Sur le palier 1 300, l'anticipation du signal qu'apporte le module d'avance retard décroît jusqu'à rendre ce signal peu opérant pour des faibles tailles de brèche.

Il convient donc de trouver d'autres signaux aptes à effectuer les actions nécessaires à la gestion de transitoire. C'est sur des signaux issus du primaire que s'effectuent les actions automatiques de protection du réacteur listées ci-dessus.

15.6.4.2. Pression au pressuriseur

Le signal d'AAR par basse pression au pressuriseur assure donc la chute des grappes et la limitation du débit d'eau alimentaire normale (ARE) en cas de RTV de faible taille de brèche.

Au-dessous de 121 bar, le signal d'injection de sécurité par très basse pression au pressuriseur est obtenu. Il déclenche :

- la mise en service de l'IS (l'injection d'eau borée dans le primaire) ;
- l'isolement de l'eau alimentaire normale ;
- le démarrage de l'eau alimentaire de secours (ASG).

15.6.4.3. Isolement des lignes vapeur

Pour de très petites tailles de brèche, la régulation de la pression au pressuriseur est en mesure de compenser au moins partiellement la dépressurisation. Il faut donc qu'un autre système soit en mesure de traiter ces toutes petites brèches. De plus, un autre signal doit être dimensionné pour assurer l'isolement des lignes vapeur pour les cas où intervient le signal de basse pression au pressuriseur.

Sur les paliers français à 4 boucles de 1 300 MWe et 1 450 MWe, on a défini un signal de très basse température sur une branche froide (TBTBF). Ce signal, caractéristique des transitoires de RTV, provoque l'isolement des lignes vapeur. Il provoque en outre le démarrage différé de la FBA, système destiné à assurer le retour en sous-criticité du réacteur à long terme. Les études des transitoires de RTV montrent que ce signal intervient toujours après les signaux de basse et très basse pression au pressuriseur. Initialement fixé à 281 °C, le seuil de TBTBF a été abaissé à 267 °C pour éviter les intempestifs.

Sur le palier 900, c'est sur un signal de très basse pression vapeur qu'a lieu l'isolement des lignes vapeur.

À noter : le signal de basse pression vapeur avancée concomitant à un haut débit vapeur n'est jamais atteint au-dessous d'une certaine taille de brèche car le débit vapeur est insuffisant pour obtenir un signal de haut débit vapeur.

15.6.5. Dimensionnement des seuils, brèches interfaces et spectre de brèche

Pour vérifier le bon dimensionnement du système de sécurité, on détermine pour chaque taille de brèche quel signal est susceptible d'intervenir en premier pour protéger le réacteur. Classiquement on reconstitue les courbes des temps d'intervention des signaux en fonction des tailles de brèche.

En supposant que les évolutions de RFTC sont monotones entre deux brèches interfaces, c'est-à-dire deux brèches où deux signaux différents arrivent de façon concomitante, on peut se contenter de vérifier que les brèches interfaces sont plus favorables que la brèche guillotine.

Enfin, en raison d'une fréquence d'occurrence plus forte, l'ouverture d'une soupape est classée comme transitoire de seconde catégorie et doit respecter des critères plus sévères que la brèche guillotine (quatrième catégorie) ou les autres tailles de brèches (troisième catégorie).

En fait, lors de la mise en place de nouvelles gestions de combustible, l'étude de l'accident de RTV constitue une limite pour les performances du combustible (longueur des cycles, teneur en MOX...). Mais on tend à limiter autant que possible les modifications des valeurs des seuils de protection pour ne pas modifier les contraintes d'exploitation et éviter les risques d'AAR ou d'IS par des signaux intempestifs.

On préfère modifier la concentration en bore du PTR (et du RIB sur 900), la sous-criticité requise dans les états d'arrêt (et donc la concentration en bore requise au primaire) ou même installer des grappes supplémentaires plutôt que de changer les valeurs des seuils des protections.