RAYONNEMENT SYNCHROTRON, RAYONS X ET NEUTRONS AU SERVICE DES MATÉRIAUX

Analyse des contraintes et des textures

Sous la direction de Alain Lodini et Thierry Baudin

physique | matériaux

Extrait de la publication

RAYONNEMENT SYNCHROTRON, RAYONS X ET NEUTRONS AU SERVICE DES MATÉRIAUX

Analyse des contraintes et des textures

Sous la direction de Alain Lodini et Thierry Baudin

17, avenue du Hoggar Parc d'activités de Courtaboeuf, BP 112 91944 Les Ulis Cedex A, France

Imprimé en France

ISBN: 978-2-7598-0020-9

tous pays. La loi du 11 mars 1957 n'autorisant, aux termes des alinéas 2 et 3 de l'article 41, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective », et d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (alinéa 1^{er} de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du code pénal.

© EDP Sciences 2012

Sommaire

Remerciements		•		•		•	•	• •	 •	•		•	•			•	•	•	• •	 		•	•	•		XV
Liste des auteurs	5	•			•	•	•	• •	 • •	•		•	•		•	•	•	•	• •	 •			•			xvii
Préface	•	•	•••	•	•	•	•	• •	 •	•	•	•	•	•••	•	•	•	•	•	 ••	 •••	•	•	•	•	xxi

Chapitre 1 : Introduction

Intérêt de la diffraction pour la caractérisation des contraintes	
et de la texture	1
Brève histoire de la mesure des contraintes au moyen de la technique	
des neutrons	3
Portée de l'ouvrage	7
	Intérêt de la diffraction pour la caractérisation des contrainteset de la textureBrève histoire de la mesure des contraintes au moyen de la techniquedes neutronsPortée de l'ouvrage

Chapitre 2 : Intérêt des neutrons dans la caractérisation des matériaux

1.	Cara	ctéristiques du neutron	13
	1.1.	Onde et particule	13
	1.2.	Interaction neutron-matière	14
	1.3.	Absorption	15
2.	Prod	uction des neutrons	16
	2.1.	Sources de neutrons à fission	16
	2.2.	Sources de neutrons à spallation	17
	<i>2.3</i> .	État des lieux et évolution future des sources de neutrons	18
3.	Instr	umentation	19
	3.1.	Fonction de diffusion d'un ensemble d'atomes	19
	3.2.	Diffractomètres pour poudres et mesures de déformations	21
	3.3.	Comparaison entre les instruments sur sources continues	
		et sur sources pulsées	22
4 .	Princ	ipales applications de la diffusion de neutrons en science	
	des n	natériaux	24
	4.1.	Diffraction de Bragg	25

	4.2.	Contraintes résiduelles	26
	4.3.	Diffusion diffuse élastique	30
	4.4.	Diffusion de neutrons aux petits angles (DNPA)	31
	4.5.	Réflectométrie de neutrons	33
	4.6.	Diffusion inélastique de neutrons	34
	4.7.	Diffusion quasi élastique de neutrons	36
5.	Autre	es techniques de caractérisation des matériaux utilisant	
	des f	aisceaux de neutrons	36
	5.1.	Neutronographie	36
	5.2.	Analyse par activation neutronique (AAN)	39
6.	Conc	lusion et perspectives	40

Chapitre 3 : Utilisation du rayonnement synchrotron en science des matériaux

1.	Le rayonnement synchrotron	43
2.	Dispositifs d'insertion	45
3.	Optiques des rayons X	48
4.	Diffraction en science des matériaux	49
5.	Imagerie	53
6.	Diffraction et microtomographie couplées en science des matériaux	54
7.	Conclusion	55

Chapitre 4 : Évaluation et problèmes dans la détermination des contraintes

4.1	1	Dé [:] Dai	te r la	rr a	nin tec	at hr	ion niqu	b Je	es de	cc Ia	onti a di	rai ffr	nt ac	es ctic	ma on	acı	íOS	;C(р	iqı	ues	S	
-	_			_					-								_						

1.	Prin	cipe de détermination des contraintes par diffraction	60
2.	Défi	nition des contraintes et des déformations	62
3.	Rela	tions macroscopiques et microscopiques	64
	3.1.	Cas d'une structure monocristalline	64
	<i>3.2</i> .	Cas d'une structure isotrope polycristalline non texturée	67
	<i>3.3</i> .	Cas d'une structure polycristalline polyphasée non texturée	67
4 .	Con	clusion	69
4.	2 M	Mesure des macrocontraintes par diffraction Jans les matériaux texturés	

1. Introduction	71
-----------------	----

2.	Calcul des constantes élastiques de diffraction pour des matériaux texturés 73
	2.1. Modèles de calcul des constantes élastiques de diffraction
	2.2. L'approche quasi isotrope
3.	Modélisation et détermination expérimentale des constantes élastiques
	de diffraction
	3.1. Influence de l'anisotropie du cristal
	3.2. Influence de l'anisotropie d'un échantillon 85
	3.3. Vérification expérimentale des constantes élastiques de diffraction 8
4.	Méthode des réflexions multiples pour la détermination des contraintes
	dans un échantillon texturé
	4.1. Mesures de macrocontraintes dans des échantillons de cuivre laminés à froid 99
	4.2. Evolution de la microstructure et de l'état de la contrainte pendant le
_	recuit du cuivre laminé à froid
5.	Conclusion
4.	3 Détermination des contraintes microscopiques
	par la technique de diffraction
1.	Introduction
2.	Approche physique et micromécanique du matériau 100
3.	Traitement des pics de diffraction et soustraction
	des effets instrumentaux 10.
4.	Influence des hétérogénéités de déformations élastiques des cristallites 10
5.	Effet de la taille des domaines cohérents de diffraction
	et de la distribution des microdéformations d'ordre III 100
6.	Expression globale de l'élargissement des pics de diffraction 11

Chapitre 5 : Techniques de mesures

5.1 Diffraction des rayons X de laboratoire

Intro	duction
Princ	ipe 116
2.1.	Relation entre la diffraction et la déformation élastique
2.2.	Relation entre la déformation élastique et la contrainte 117
2. <i>3</i> .	Détermination des contraintes par diffraction 119
Acqui	sition
3.1.	Préparation de l'échantillon 120
3.2.	Choix des conditions de diffraction 121
<i>3.3</i> .	Stratégies d'acquisition 122
3.4.	Réglage du goniomètre 134
3.5.	Problèmes de taille de cristallites
3.6.	Problème des pics tronqués 138
	Introd Prince 2.1. 2.2. 2.3. Acqui 3.1. 3.2. 3.3. 3.4. 3.5. 3.6.

	<i>3</i> .7.	Détermination de gradients de contrainte selon la profondeur	139
	3.8.	Détermination de gradients de contrainte selon la surface	142
4.	Trait	ement des données	142
	4.1.	Traitement des diffractogrammes	142
	4.2.	Traitement des positions des pics de diffraction	143
	<i>4.3</i> .	Traitement simultané de l'ensemble des données	149
5.	Inter	prétation des résultats	151
	5.1.	Définition du mesurande	151
	5.2.	Contraintes d'ordre II	152
	5.3.	Texture cristalline	153
	5.4.	Multiphasage	155
	5.5.	Rugosité	155
	5.6.	Géométrie de l'échantillon	156
6.	Evalu	ation de la qualité des mesures	158
	6.1.	Evaluation qualitative	158
	6.2.	Calcul d'incertitude	159
	6.3.	Echantillons de référence	164
	6.4.	Normalisation	165
	6.5.	Informations nécessaires à l'évaluation de la qualité	1.05
_	C	et a l'interpretation des mesures	165
7.	Conc	lusion	166
5.	2 Ir	nagerie des champs de déformation obtenue	
5.	2 Ir p	nagerie des champs de déformation obtenue ar diffraction neutronique	
5. 1.	2 Ir p Intro	nagerie des champs de déformation obtenue ar diffraction neutronique duction	172
5. 1. 2.	2 Ir p Intro Spéci	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations	172 173
5. 1. 2. 3.	2 Ir p Intro Spéci L'ins	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL	172 173 175
 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1.	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument	172 173 175 176
 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2.	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé	172 173 175 176 178
 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3.	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons	172 173 175 176 178 182
 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4.	nagerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques	172 173 175 176 178 182 186
5. 1. 2. 3.	2 Ir p Intro Spéci 3.1. 3.2. 3.3. 3.4. 3.5.	nagerie des champs de déformation obtenue ar diffraction neutronique duction	172 173 175 176 178 182 186 188
 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi	magerie des champs de déformation obtenue ar diffraction neutronique duction duction spour un système d'imagerie des déformations fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale	172 173 175 176 178 182 186 188 191
 1. 2. 3. 4. 5. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag	magerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure	172 173 175 176 178 182 186 188 191 192
 1. 2. 3. 4. 5. 6. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conc	magerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations fument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure	172 173 175 176 178 182 186 188 191 192 197
 1. 2. 3. 4. 5. 6. An 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce	magerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure	172 173 175 176 178 182 186 188 191 192 197 198
 1. 2. 3. 4. 5. 6. An 5. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce nexe 3 D	magerie des champs de déformation obtenue ar diffraction neutronique duction duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure lusion	172 173 175 176 178 182 186 188 191 192 197 198
 1. 2. 3. 4. 5. 6. An 5. 1 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce nexe 3 D	magerie des champs de déformation obtenue ar diffraction neutronique duction duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure lusion	172 173 175 176 178 182 186 188 191 192 197 198
 1. 2. 3. 4. 5. 6. An 5. 1. 9 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce nexe 3 D Intro	magerie des champs de déformation obtenue ar diffraction neutronique duction	172 173 175 176 178 182 186 188 191 192 197 198 201 202
 1. 2. 3. 4. 5. 6. An 5. 1. 2. 3 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce nexe 3 D Intro Péné	magerie des champs de déformation obtenue ar diffraction neutronique duction	172 173 175 176 178 182 186 188 191 192 197 198 201 203 204
 1. 2. 3. 4. 5. 6. An 5. 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Conce nexe 3 D Intro Péné Volun	magerie des champs de déformation obtenue ar diffraction neutronique duction	172 173 175 176 178 182 186 188 191 192 197 198 201 203 204
 1. 2. 3. 4. 5. 6. An 5. 1. 2. 3. 	2 Ir p Intro Spéci L'ins 3.1. 3.2. 3.3. 3.4. 3.5. Profi Imag Concenexe 3 D Intro Péné Volum 3.1. 3.2.	magerie des champs de déformation obtenue ar diffraction neutronique duction fications pour un système d'imagerie des déformations trument SALSA à l'ILL Description générale de l'instrument Porte-échantillon robotisé Monochromateur et guide de neutrons Fentes optiques Collimateurs radiaux I d'intensité et résolution latérale erie et distribution de longueurs d'ondes de la sonde de mesure lusion iffraction par rayonnement synchrotron duction tration du faisceau me de mesure Géométrie en transmission et en réflexion Résolution shotiale	172 173 175 176 178 182 186 188 191 192 197 198 201 203 204 204 204

 6. Installation typique à partir d'un diffractomètre poudre 7. Techniques d'imagerie bidimensionnelle 7.1. Diffraction conventionnelle 2D sur poudre 7.2. Microscopie 3D par rayons X synchrotron 8. Techniques en dispersion d'énergie 9. Exemples expérimentaux 9.1. Soudage par friction malaxage analysé sur ID31 de l'ESRF 9.2. Diffraction par dispersion d'énergie d'éprouvettes fissurées 10. Conclusion 	207 208 209 210 212 213 213 215 216
5.4 Cartographies d'orientations et de déformations à l'échelle submicronique grâce à la microdiffraction en faisceau polychromatique	
 Introduction Description des composants des lignes de lumière Logiciel d'analyse Exemples d'applications de la microdiffraction Laue 4.1. Échantillons à gros grains – Alliage à mémoire de forme 4.2. Échantillons à grains fins – Films minces texturés 5. Conclusion 	219 220 223 226 226 229 230
5.5 Diffraction des rayons X : un outil de choix pour l'étud des propriétés mécaniques aux petites échelles	е
 5.5 Diffraction des rayons X : un outil de choix pour l'étud des propriétés mécaniques aux petites échelles 1. Introduction	235 236 243 244 246 247 248
 5.5 Diffraction des rayons X : un outil de choix pour l'étud des propriétés mécaniques aux petites échelles 1. Introduction 2. Diffraction cinématique des rayons X : puissant outil pour l'analyse des déformations dans les cristaux 3. Faisceaux de rayons X de taille submicronique 4. Réseaux périodiques 5. Diffraction cohérente 6. Inversion 7. Conclusion 5.6. Un regard sur l'EBSD, procédures passées et nouvelle 	235 236 243 244 246 247 248

Chapitre 6 : Influence de la texture

6.1 Représentation des orientations cristallines -Quelques exemples de texture

1.	Introduction	278
2.	Description et représentation des orientations cristallines	278
	2.1. Îndices de Miller, figures de pôles directes et inverses	279
	2.2. Angles et espace d'Euler	283
3.	Quelques exemples de texture dans les métaux	285
	3.1. Textures de solidification	285
	3.2. Textures de déformation à chaud	286
	3.3. Textures de déformation à froid	287
	3.4. Textures de recristallisation	295
4.	Quelques exemples de textures (ou fabriques) dans les matériaux	
	géologiques	299
5.	Conclusion	300
6	2 Mesure de la texture par diffraction des ravons X	
0.	ou des neutrons et calcul de la FDOC	
1		909
1.	Introduction	303
z.	Mesures des ngures de poles directes par diffraction	304
	2.1. Diffraction des rayons A	200 206
	2.2. Dijfaction des neutrons	210
2	2.3. Conclusion	310 211
5.	3.1 Définition	311 211
	3.2 Calcul de la FDOC	311 819
1	5.2. Can a la diffraction des neutrons	314 815
т.	4.1 Examples a application de la unitación des neutrons	315 816
	4.2 Étude in situ de l'évolution de la texture de la glace	510
	4.2. Eluae in sua a l'evolution de la texture de la giace soumise à un chargement uniavial	317
	4.3 Texture d'une cuirasse d'un arauchusier	319
5	Conclusion	319
		010
6.	3 Mesure de la texture et calcul de la FDOC	
	à l'aide d'approches locales	
1.	Introduction	322
2.	Méthodes de mesure des orientations cristallographiques	322
3.	Corrélation entre la texture et la microstructure	323
4.	Calcul de la FDOC	326
	4.1. Méthode harmonique	326
	4.2. Méthode de Matthies	328
5.	Analyse de la texture	329
6.	Conclusion	339

6.4 Influence des textures sur les propriétés physiques

1.	Introduction			
2. Propriétés élastiques				
	2.1. Monocristaux	344		
	2.2. Polycristaux	345		
3.	Expansion thermique	348		
	3.1. Cas des bicristaux de zinc	350		
	3.2. Rochet thermique (thermal ratchetting) de l'uranium S	352		
	<i>3.3.</i> Cas du zircaloy-2 §	354		
4.	Anisotropie de déformation plastique	358		
	4.1. Cornes d'emboutissage	358		
	4.2. Durcissement textural (texture hardening) des matériaux de structure			
	hexagonale compacte 5	363		
5.	Texture et contraintes résiduelles	364		
6.	Texture et anisotropie magnétocristalline	370		
7.	. Texture et magnétostriction			
8. Conclusion				

Chapitre 7 : Interprétation des contraintes résiduelles à l'aide de la simulation numérique

7.1 Modèle autocohérent de la déformation élastoplastique et ses applications

1.	Géné	ralités sur la modélisation de la déformation	380
	1.1.	Mécanismes de la déformation plastique	380
	1.2.	Caractéristiques générales des modèles de déformation	382
	<i>1.3</i> .	Notions de base	384
2.	Mod	èle autocohérent	389
	2.1.	Modules tangents	389
	2.2.	Calcul des déformations	390
	<i>2.3</i> .	Tenseurs de concentration	392
	2.4.	Critères de sélection des systèmes de glissement	393
3.	Appli	ications du modèle autocohérent	393
	3.1.	Prévision des textures	394
	3.2.	Prévision des courbes de durcissement	395
	<i>3.3</i> .	Interprétation des mesures des contraintes résiduelles par diffraction	395
	3.4.	Étude des contraintes internes dans un acier biphasé	398
	3.5.	Étude des contraintes internes dans un composite AlSiC	398
	3.6.	Calcul de l'énergie de dislocations et de l'énergie élastique stockée	
		dans le matériau	400
4.	Conc	lusion	402

An An	nexe nexe	 Calcul des vitesses de glissement et du module tangent du grain Équation intégrale décrivant le comportement du matériau 	404
		hétérogène	405
7.	2 S d c	imulation par la méthode des éléments finis u comportement mécanique local des polycristaux – ouplages physiques	
1.	Intro	duction	410
2.	Agré	gats cristallins, conditions aux limites et maillage	410
	2.1.	Obtention des agrégats	410
	2.2.	Maillage et conditions aux limites	412
3.	Mod	èles cristallins	413
	3.1.	Modélisation du type forêt avec écrouissage isotrope, $T > T_F/3$	413
	<i>3.2</i> .	Modèles du type Forêt avec écrouissage cinématique, $T > 0, 3T_F$	418
	<i>3.3</i> .	Modèles cristallins basse température, écrouissage isotrope, $T < T_F/3 \dots$	419
	3.4.	Modèle de transition hautes / basses températures	424
4.	. Cadre de la modélisation – description du formalisme en grandes		
	trans	formations	427
5.	Exen	nples	430
	5.1.	Modélisation du forgeage à chaud d'un alliage de titane	431
	5.2.	Simulation de la recristallisation d'une tôle d'acier laminée –	
		Couplage déformation-recristallisation	433
	5.3.	Simulation de la rupture en fond de fissure dans	
		la transition fragile/ductile – Couplage déformation-	400
c	0		439
6.	Cond	Clusion	445
7.	3 A	pport de la simulation numérique pour l'évaluation	

7 1 des contraintes par diffraction de neutrons et rayonnement synchrotron

1.	Introduction	449
2.	Simulation d'un diffractomètre de neutrons deux axes	451
3.	Évaluation des contraintes d'une pièce nitrurée	455
4.	Évaluation des contraintes résiduelles d'un alliage à base nickel grenaillé	459
5.	Contraintes résiduelles d'une liaison métal céramique	464
6.	Contraintes résiduelles d'une soudure hétérogène	472
7.	Conclusion	475

Chapitre 8 : Applications

8.1 Applications en aéronautique

1.	Progression	dans l'utilisation des grands instruments		478
----	-------------	---	--	-----

2. 3.	Analyse de contraintes et corrections instrumentales Exemples d'application utilisant les grands instruments	479 481
	3.1. Traitement de surface de nitruration 3.2. Assemblage par FSW	481 485
4	3.3. Procédé de formage de tôles minces par déformations plastiques locales	488
4.	Conclusion	491
8.	2 Mesure et modélisation de la redistribution des contraintes résiduelles, sous sollicitations cyclique dans un assemblage fretté roue-axe ferroviaire	es,
1.	Introduction	493
2.	Contexte industriel	494
3.	Modélisation numérique	495
	3.1. Loi de comportement du matériau	495
	3.2. Simulation numerique du calage à la presse	497
	3.3. Simulation du chargement de fatigue	503
1	5.4. Conclusion	509
4.	dans l'assemblage par diffraction de neutrons	510
	4.1. Étude préliminaire	510
	4.2. Redistribution des champs mécaniques par fatigue oligocyclique	518
5.	Conclusion	523
Q	3 Évaluation dos contraintos rásiduallos	
0.	dans des assemblages soudés	
1.	Introduction	525
	1.1.Généralités1.2.Difficultés liées aux mesures de déformations	525
	dans et au voisinage de cordons de soudure	527
	1.3. Avantages de la diffraction des neutrons sur les autres techniques	
0	permettant de déterminer des contraintes résiduelles	528
2.	Influence des contraintes résiduelles sur les structures mécanosoudées	529
	2.1. Fissuration par l'hydrogene	529
2	2.2. Rune par jaugue	929
5.	des neutrons dans le cas de structures soudées	530
	3.1. Comparaison des mesures obtenues par diffraction des neutrons	000
	à d'autres techniques de mesures	530
	3.2. Quelques applications spécifiques sur les joints soudés	539
	3.3. Comparaison entre mesures de déformations résiduelles par diffraction des neutrons et modélisations	544
4.	Effet des textures cristallographiques sur les calculs de contraintes	
2	résiduelles dans les cordons de soudures	551
5.	Conclusion	556

8.4 Estimation de l'énergie stockée, force motrice de la recristallisation

1.	Introduction	560	
4.	cristallographique par diffraction		
	2.1 Principe de la méthode de mesure par diffraction	500	
	des ravons X ou des neutrons	560	
	2.2. Résultats obtenus par la méthode de mesure d'énergie par diffraction	564	
3.	Calcul de l'énergie stockée en fonction de l'orientation	001	
	cristallographique à l'aide du MET et de l'EBSD	571	
	3.1. Principe de l'approche de Dillamore	571	
	<i>3.2. Modification apportée à la méthode de Dillamore</i>	571	
4.	Étude comparative des mesures d'énergie	573	
5.	Conclusion	575	
0.		010	
8.	5 Analyse des contraintes internes		
	dans les matériaux composites		
1	Introduction	577	
1.	Introduction	577	
4 .	Les contraintes internes dans les composites	578	
э.	Application des tecnniques de diffraction pour l'analyse des contraintes	200	
	residuenes dans les materiaux composites	200	
	5.1. Contraintes thermiques	581	
	5.2. Contraintes inautes par la deformation plastique	582	
	3.3. Les contraintes generees par les differences d'élasticite	583	
4.	Détermination des profils de macrocontraintes résiduelles	585	
5.	Conclusion	586	
8.	6 Intérêt de la diffraction de neutrons et de		
	ravons X du ravonnement synchrotron dans		
	l'analyse des matériaux à mémoire de forme		
	l'allaigse des matemaux à memoire de forme		
1.	Introduction	590	
2.	Mesure des déformations et analyse des contraintes par diffraction		
	de neutrons	590	
	2.1. Diffraction de neutrons en temps de vol – Études		
	expérimentales sur les alliages FePd, CuAlZnMn et NiTi	590	
	2.2. Diffraction de neutrons à haute résolution en angle –		
	Etude expérimentale sur l'alliage CuAlBe	593	
3.	Diffraction de rayons X du rayonnement synchrotron	596	
	3.1. Le microscope 3DXRD	597	
	3.2. Technique « MicroLaue » ou microdiffraction polychromatique	601	
4.	Conclusion	607	
8.	7 Caractérisation des biomatériaux implantaires		
1.	Introduction	609	

0	771' 1 '('' /	c.00	
Ζ.		609	
	2.1. Le tissu osseux	610	
	2.2. Mesures expérimentales dans l'os	610	
3.	Les biomatériaux implantaires	612	
	3.1. Modélisation de la projection d'HAp par torche plasma		
	sur substrat de titane	613	
	3.2. Contraintes résiduelles déterminées par la méthode de diffraction		
	de rayonnement synchrotron	615	
4.	Interface os-implant en titane revêtu par HAp	619	
5.	Conclusion	623	
8.8	8 Déformations résiduelles dans les géomatériaux :		
	exemple des roches riches en quartz		
1	Introduction	695	
1. 9	Origina et engliestion eux géometérieux	695	
4.	Origine et application aux geomateriaux	025	
3.	Classification des deformations ou des contraintes residuelles	626	
4.	Méthodes de diffraction appliquées aux géomatériaux	629	
5.	Déformations résiduelles dans des roches faiblement déformées à froid :		
	les grès	630	
6.	Cas d'études des déformations résiduelles par des méthodes distinctes		
	de la diffraction des neutrons	633	
	6.1. Exemple du plissement d'une couche de grès	633	
	6.2. Déformation de plaques de marbre	634	
7.	Hétérogénéité des déformations résiduelles dans les géomatériaux	636	
8.	Les déformations résiduelles dans les quartzites :		
	dualité déformation-recristallisation ?	638	
9.	Interprétation du tenseur des déformations résiduelles.		
	Application à la modélisation numérique des textures	642	
10	Conclusion	644	
In	Index		

This page intentionally left blank

Remerciements

A. Lodini et T. Baudin remercient chaleureusement tous les auteurs qui ont contribué au bon déroulement et à la rédaction de ce livre. Un remerciement tout particulier à J. Philibert qui a été très actif dans l'édition de ce livre. Une attention particulière à T. Burslaps, O. Castelnau, J. Driver, C. Esling et V. Klosek pour la qualité des discussions scientifiques et à F. Brisset, R. Penelle et D. Solas pour la traduction de certains chapitres écrits en anglais.

This page intentionally left blank

Liste des auteurs

A. Baczmanski

Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

L. Barrallier

Laboratoire MecaSurf, ENSAM d'Aix-en-Provence, 2, Cours des Arts et Métiers, 13617 Aix-en-Provence Cedex 1, France

T. Baudin

Université Paris-Sud 11, LPCES/ICMMO, UMR CNRS 8182, bâtiment 410, 91405 Orsay Cedex, France

S. Berveiller

Laboratoire de Physique et Mécanique des Matériaux (LPMM), ENSAM, 4 rue Augustin Fresnel, 57078 Metz, France

D.J. Dingley

Visiting Professor at Bristol University, UK and formerly TSL_EDAX Utah, USA

A.L. Etter

Université Paris-Sud 11, LPCES/ICMMO, UMR CNRS 8182, bâtiment 410, 91405 Orsay Cedex, France

O. Fandeur

CEA, DEN, DM2S, SEMT, LM2S, F-91191 Gif-sur-Yvette, France

M. François

Université de Technologie de Troyes (UTT), 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex.

M.E. Fizpatrick

Materials Engineering, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

G. Geandier

LPM-Phymat, Université de Poitiers - UFR Sciences - SP2MI, Boulevard Marie et Pierre Curie, BP 30179 - 86 962 Futuroscope Chasseneuil Cedex, France

J. C. Guezou

Département des Sciences de la terre et Environnement, Université de Cergy-Pontoise, 95031 Cergy Cedex, France

V. Honkimaki

European Synchrotron Radiation Facility, B.P.220, 38043 Grenoble, France

A. Krawitz

University of Missouri, Columbia, Missouri 65211, USA

P. Lipinski

Ecole Nationale d'Ingénieurs de Metz, LFM, Ile du Saulcy, 57 045 Metz, France

A. Lodini

Université de Reims (LACMDTI-UFR Sciences) Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif-sur-Yvette, France

B. Malard

Laboratoire SIMaP - Science et Ingénierie des Matériaux et Procédés, Grenoble INP-BP 75.

38402 Saint Martin d'Hères Cedex, France

A.M. Maréchal

Agence d'Essai Ferroviaire de la SNCF, 21 av. du Président Allende, 94407 Vitrysur-Seine.

M.H. Mathon

Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif-sur-Yvette, France

P. Millet

Université de Reims (LACMDTI-UFR Sciences, Reims, France

C.H. de Novion

Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif-sur-Yvette, France

F. Ott

Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif-sur-Yvette, France

P. Paillard

Laboratoire Génie des Matériaux et Procédés Associés EA 2664, BP 50609, 44306 Nantes Cedex 3, France

E. Patoor

Laboratoire de Physique et Mécanique des Matériaux (LPMM), ENSAM, 4 rue Augustin Fresnel, 57078 Metz, France

R. Penelle

Université Paris-Sud 11, LPCES/ICMMO, UMR CNRS 8182, bâtiment 410, 91405 Orsay Cedex, France

T. Pirling

Institut Max von Laue – Paul Langevin, 6, rue Jules Horowitz, 38042 Grenoble, France

C. Prioul

Laboratoire Mécanique des Sols Structures et Matériaux, UMR CNRS 8579, École Centrale Paris, 92295 Châtenay-Malabry, France

C. Rey

Laboratoire Mécanique des Sols Structures et Matériaux, UMR CNRS 8579, École Centrale Paris, 92295 Châtenay-Malabry, France

D. Solas

Université Paris-Sud 11, LPCES/ICMMO, UMR CNRS 8182, bâtiment 410, 91405 Orsay Cedex, France

J.M. Sprauel

CIME / EA(MS)², IUT Aix en Provence, Av. Gaston Berger, 13625 Aix-en-Provence, France

A.Steuwer

Institut Max von Laue – Paul Langevin, 6, rue Jules Horowitz, 38042 Grenoble, France

O. Thomas

Aix-Marseille Université, IM2NP, CNRS, IM2NP (UMR 6242), Faculté des Sciences et Techniques, Campus de St Jérome, 13397 Marseille Cedex, France

K. Wierzbanowski

Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

A. Yaméogo

Laboratoire MSSMAT, UMR CNRS 8579, École Centrale de Paris, 92295, Châtenay Malabry, France