

ELEMENTS OF NUCLEAR SAFETY

Jacques Libmann

INSTITUT DE PROTECTION ET DE SURETE NUCLEAIRE

ELEMENTS OF NUCLEAR SAFETY

Jacques LIBMANN

English translation by Jean Mary Dalens

Avenue du Hoggar Zone Industrielle de Courtabœuf BP 112 91944 Les Ulis cedex A, France

Extrait de la publication

Book series coordinated by Henri Métivier

Books already published:

Agriculture, Environnement et Nucléaire : comment réagir en cas d'accident

Auteurs : René Coulon, Jacques Delmas, Gérard Griperay, Philippe Guetat, René Loyau, Claude Madelmont, Rémy Maximilien, Jean-Claude Rottereau

Traitement de la contamination interne accidentelle des travailleurs

Auteurs : M.H. Bhattacharyya, B.D. Breistenstein, H. Métivier, B.A. Muggenburg, G.N. Stradling, V. Volf

Approche de la sûreté des sites nucléaires

Auteur : Jean Fauré

Circonstances et conséquences de la pollution radioactive dans l'ancienne Union soviétique

D. Robeau, Coordinateur.

Auteurs : Jean-Claude Nénot, Christian Chenal, Sabine Charmasson, Daniel Robeau, M. Bertin, Philippe Renaud, Henri Maubert, André Jouve, Alexandre Grebenkov

Éléments de sûreté nucléaire

Elements of Nuclear Safety (Russian version in preparation)

Auteur : Jacques Libmann

Le tritium – de l'environnement à l'Homme

Yves Belot, Monique Roy et Henri Métivier, Coordinateurs. Auteurs : Y. Belot, M. Roy, H. Métivier, P. Pihet, Ph. Duport, A. Flüry-Hérard, E. Rabin, Ph. Boucquey, F. Briot, P. Giroux, J.Y. Hervé, J.P. Le Goff et G. Pescayre

Radionuclides in the Oceans

P. Guéguéniat, P. Germain and H. Métivier, Coordinators

ISBN: 2-86883-286-5

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the French Copyright law of March 11, 1957. Violations fall under the prosecution act of the French Copyright Law.

Foreword

This basically educational document draws much of its substance from all the various activities of the Institute for Nuclear Safety and Protection (IPSN), the technical support body of the Nuclear Installation Safety Directorate (DSIN). The latter organizations however may under no circumstances be considered liable for its contents.

Its purpose was to heighten awareness among analysts and more generally among all those concerned by nuclear safety. The safety picture presented is consequently not intended to be well-balanced. It is moreover imbued with the activities and viewpoints of the IPSN, which is only one of the safety organisms concerned.

The present document is an extensively supplemented revision of work published in 1988 by the National Institute for Nuclear Science and Technology (INSTN) under the title "Approche et analyse de la sûreté des réacteurs à eau sous pression". As in the previous case, this work would not have been possible without the technical and financial assistance of the DSIN. The personal acknowledgments featured in the 1988 publication remain intact for the present version, as follows: Monique Libmann; Marie-Claire Dupuis, Bernard Barrachin, André Cayol, Bernard Fourest; Daniel Quéniart, Yves Chelet, François Cogné.

The basic raw material for a general review of the activity of a large group is the actual work of the members of the group considered. This was, of course, the case for the present document and I should like to mention in a far from exhaustive list some of those on whom I relied for assistance: Roland Avet-Flancart, Bernard Barbé, Alain Bardot, Bernard Barrachin, Bernard Bartholmé, Geneviève Beaumont, Claude Birac, Christine Bonnet, Jean Bourgeois, Louis Brégeon, Jacques Brisbois, Jean-Paul Bussac, Gérard Cadolle, Marc Champ, Yves Chelet, Alain Chesnel, Jean-Pierre Clausner, François Cogné, Yvon Cornille, Patrick Cousinou, Bernard Crabol, Michel Delage, Gérard Delettre, Gérard Depond, Yves Droulers, François Ducamp, Jacques Duco, Marie-Claire Dupuis, Véronique Fauchille, Jean Fauré, Christine Feltin, Bernard Fourest, Denis Goetsch, Christian Giroux, Alain Gouffon, Gilbert Gros, François Heili, Jean-Yves Henry, Karine Herviou, Jean Jalouneix, Laurent Janot, Martial Jorel, Anne Jouzier, Patrick Jude, Milène Julien-Dolias, Jeanne-Marie Lanore, Michel Lavérie, Corentin Le Doaré, Catherine Lecomte, Joseph Lewi, Alain L'Homme, Marcel Le Meur, Agnès Levret, Daniel Manesse, Jean-Marie Mattéi, Jean-Pierre Merle, Henri Métivier, Jean-Luc Milhem, Bagher Mohammadioun, Jean-Claude Nénot, Jacques Ney, Nicole Parmentier, Dorothée Pattée, Frédérique Pichereau, Jean-Louis Pierrey, Jean-Claude Puit, Daniel Quéniart, Bruno Ragué, Henri Roche, François Rollinger, Lucien Rousseau, Monique Roy, Jacques Savornin, Jean-Jacques Sévéon, Henri Sureau, Pierre Tanguy, Nicholas Tricot, Serge Vidal-Servat...

Consistency of principles and their expression was once again assured by Daniel Quéniart, who thus made a decisive contribution to the contents of this text.

The readability of the book, both for French and foreign readers, was vastly improved thanks to the advice and comments of Nathalie Rutschkowsky.

Philippe Vesseron and Henri Métivier fostered its publication in this form, whilst Etienne Benoist encouraged its translation into English and Russian.

To Monique Libmann and Monique Roy was entrusted the thankless task of rereading.

I am most honored that Mr. André-Claude Lacoste, Director of the DSIN and Chairman of the Board of Management of the IPSN, has accepted to preface the book.

I thank them all. Needless to say, any errors and imperfections which may nevertheless have been overlooked remain my entire responsibility.

Jacques Libmann

Preface

Like many other industrial safety fields, nuclear safety has developed considerably over the last few decades. An essential component of the very notion of safety is doubtless the ceaseless quest for improvement.

The impact of these developments on organizations is in part related to the more widespread use of nuclear energy. The prime responsibility of nuclear operators for the safety of their plants is now clearly acknowledged by the International Convention on Nuclear Safety, as is the necessity for each country concerned to constitute a competent safety authority, independent of organisms promoting nuclear energy. It was only in 1973 that such a nuclear safety authority (SCSIN) was set up in France, as a department of the ministry of industry. Twenty years later, it became the DSIN (nuclear installation safety directorate), responsible to the ministers for industry and for the environment respectively. For several years now, the running of this department has been supervised by the Parliamentary Office for Assessment of Scientific and Technological Options and the implementation of nuclear safety statutory provisions is currently being considered.

Technical repercussions have also been extensive, since ideas have considerably progressed in France since the initial adoption of the American PWR design, accompanied by its already voluminous package of regulatory or pararegulatory texts. The EDF and Framatome engineers, together with those of the safety authority and its technical support structure, the IPSN, had first to become thoroughly acquainted with the basic reactor type before gradually moving on to a more practical approach, involving the control of accidents considered as beyond design basis events in American practice and even those culminating in core meltdown. Deep thinking along these lines even led to certain previously adopted but inadequately validated criteria being called into question, such as the use of fuels with high burnup fractions.

These gradual developments, prompted by know-how advances, whether based on operating feedback or research and development results, are the subject matter of Jacques Libmann's book. Throughout his career at the IPSN, Jacques Libmann has personally followed all the varied details of this progression, as now witnessed by his book. Many of you will remember him from their training courses, both in France and abroad, when he succeeded in convincing his listeners of the soundness of the basic safety principles which have gradually been defined. The publication of this book will doubtless widen his audience even further and will be beneficial to all those seeking either an introduction to nuclear safety or further insight into specific aspects of the subject.

The time history approach has the advantage of showing how real improvements are achieved, sometimes after false starts, by pragmatic research where accepted ideas may have to be called into question. Current developments are aimed beyond national contexts at European, or even worldwide harmonization of safety practices, together with significant improvements on the safety level presently attained. This is notably the goal of the future PWR developed by the French and German utilities and plant builders (EPR project).

May Jacques Libmann's book assist all those, whether they be designers, operators or safety authority specialists, who, in France or abroad, are responsible for nuclear plant safety issues!

André-Claude LACOSTE

Directeur de la Sûreté des installations Nucléaires

Contents

	Introduction	1
1.	Radioactivity and the biological effects of ionizing radiation	5
1.1.	Units used	5
1.2.	Natural radioactivity	6
1.3.	Biological effects of ionizing radiation	7
1.4.	Radiation protection principles	16
2.	Nuclear safety organization	19
2.1.	Nuclear security and safety	20
2.2.	Nuclear safety organization and responsibility sharing	21
2.3.	Safety analysis reports and regulations	23
2.4.	Developments in safety goals	27
2.5.	Safety Culture	28
3.	Deterministic safety approach	31
3.1.	Determination of specific risks	31
3.2.	Potential risks, residual risks, acceptable risks	33
3.3.	The barriers	35
3.4.	The defense in depth concept	38
3.5.	Quality Control.	45
4.	Analysis of operating conditions	47
4.1.	Classification of operating conditions	47
4.2.	Definition of design basis operating condition categories	49
4.3.	Choice of operating conditions	50
4.4.	Operating conditions: list and subdivisions	52
4.5.	Operating condition analysis process	55
4.6.	Consideration of internal or external hazards	64
5.	Assessment of the radiological consequences of accidents	65
5.1.	Quantities of radioactive products involved	66

 5.3. Transfer and deposit in reactor systems	68 69 69 72 72 74 74
 5.4. Transfer and deposit in buildings	68 69 69 72 72 74 74
 5.5. Leak rate to the outside atmosphere and filtering provisions 5.6. Environmental transport and deposit conditions	69 69 72 72 74 74
 5.6. Environmental transport and deposit conditions	69 72 72 74 75
 5.7 Pathways to man	72 72 74 75
 5.8. Dose conversion factors	72 74 75
 6. An example of accident analysis: LOCA 	74
6. An example of accident analysis: LOCA	75
	.0
6.1. Physical effects of a large break	72
6.2. Assumptions adopted in safety analysis	82
6.3. Acceptability criteria and results	84
6.4. Evaluation of radiological consequences	85
6.5. Safety demonstration evolution	90
7. Assessment of safety justifications	91
7.1. Data drawn from operating condition studies	92
7.2. Checking the number of lines of defense	105
7.3. New safety demonstration requirements for the N4 series	108
8. A particular barrier point: the steam generator tubes	113
8.1. Steam generator tube rupture without human intervention	115
8.2. Complementary French studies	117
8.3. Dealing with the problem for the N4 series	118
9. Internal hazards	1 2 1
9.1. Missiles from inside the containment	122
9.2. The results of piping breaks	123
9.3. Turbogenerator bursting	124
9.4. Protection against load dropping	126
9.5. Fire protection	129
9.6. Internal flooding	132
	135
10. External hazards	
10. External hazards 10.1. Determination of earthquake hazards	136
 10. External hazards	136 141
10. External hazards. 10.1. Determination of earthquake hazards 10.2. Protection against aircraft crashes. 10.3. Industrial hazards.	136 141 145
10. External hazards. 10.1. Determination of earthquake hazards 10.2. Protection against aircraft crashes 10.3. Industrial hazards 10.4. Floods	136 141 145 147
10. External hazards. 10.1. Determination of earthquake hazards. 10.2. Protection against aircraft crashes. 10.3. Industrial hazards. 10.4. Floods 10.5. Protection against other external hazards.	136 141 145 147 149
10. External hazards. 10.1. Determination of earthquake hazards. 10.2. Protection against aircraft crashes. 10.3. Industrial hazards. 10.4. Floods 10.5. Protection against other external hazards. 11. Complementary operating conditions	136 141 145 147 149 151
10. External hazards	136 141 145 147 149 151

Contents	;
----------	---

11.3.	Complementary operating conditions	153
12.	Probabilistic assessment of an accident sequence	163
12.1.	Effects of failures and initial assumptions	163
12.2.	Chronological list of the elements forming the scenario	164
12.3.	Required data	165
12.4.	Assessment results	166
12.5.	Revision of scenarios and their probabilities	168
13.	The accident at Three Mile Island	171
13.1.	The accident	171
13.2.	Causes of the accident	177
13.3.	Lessons learned from the accident	180
14.	The state-oriented approach	183
14.1.	Limits of the event-related approach	183
14.2.	Development of the state-oriented approach	184
14.3.	First application of the state-oriented approach	185
14.4	Generalization of the state-oriented approach	188
14.5.	Safety panels	189
15.	Preparation for the management of severe accidents	191
15.1.	Core and vessel degradation	191
15.2.	The Rasmussen report	194
15.3.	"Source terms"	196
15 <i>.</i> 4.	Severe accident management studies in France	198
15.5.	Radiological consequences of source term S3	200
1 - 7	and intervention provisions	209
15.6.	List of ultimate emergency procedures	213
15.7.	Summary of procedures	213
15.8.	The fourth level of defense in depth	214
16.	Special risks associated with criticality accidents	217
16.1.	Theoretical scenario	217
16.2.	A plausible scenario and corrective measures	220
16.3.	Identification of other dilution scenarios	221
16.4.	Other criticality accident hazards	222
16.5.	International information	224
17.	Emergency preparedness and IPSN resources	227
17.1.	Emergency preparedness	227
17.2.	Role of the IPSN crisis team	230
17.3.	Method and tools of the assessment cell	231

17.4.	Methods and tools of the radiological consequences cell	238
17.5.	Conclusion on the method and tools	240
17.6.	External Emergency Plan	241
17.7.	Environmental transfer and deposit conditions	242
18.	Severe accident research and development work	247
18.1.	Thermal hydraulic codes	248
18.2.	Fission product codes	250
18.3.	Fission product experiments	252
18.4.	Corium and containment building behavior studies	253
18.5.	Other on-going surveys	254
19.	Probabilistic safety assessment	257
19.1.	Initiation of the studies	258
19.2.	Aims and organization of the studies	259
19.3.	Core meltdown probability assessment method	260
19.4.	Specificities of French studies	263
19.5.	Results of the 900 PSA survey	266
19.6.	Results of the 1300 PSA	272
19.7.	Comparison with studies undertaken abroad	274
20.	Applications and development of probabilistic studies	277
20.1.	Use of probabilistic safety studies	277
20.2.	Development of these studies and tools	285
20.3.	Probabilistic assessment of radioactive release	288
20.4.	Conclusions on the probabilistic safety studies	289
21.	The Chernobyl accident	291
21.1.	The Chernobyl plant and the RBMK reactors	292
21.2.	The accident	297
21.3.	The release and its consequences	300
21.4.	Causes of the accident and lessons learned	312
21.5.	Future of the other Chernobyl units	315
21.6.	Lessons drawn in France	315
21.7.	Information of the general public and communication	317
21.8.	After Chernobyl	318
22.	General operating rules	319
22.1.	General operating rules	320
22.2.	Technical Operating Specifications	323
22.3.	Initial and periodic tests	331
22.4.	Emergency operating procedures	335

23.	Incident analysis	339
23.1.	Incident selection	341
23.2.	Significant incident analysis methods	345
23.3.	Case of a repetitive incident	352
24.	Detailed analysis of incidents involving human factors	359
24.1.	Pressurizer heater damage at Flamanville 2	360
24.2.	Isolation of pressurizer level sensors at Cruas 2	366
24.3.	Isolation of pressurizer level sensors at Gravelines 4	368
24.4.	Analysis and lessons	369
24.5.	Check on sensor operability	374
24.6.	General considerations on maintenance activity quality	374
24.7.	Defense in depth applied to operation	377
25.	Preventive maintenance and in-service surveillance	379
25.1.	In-service surveillance for large components	379
25.2.	Preventive maintenance of equipment	381
25.3.	Steam generators	382
25.4.	Steam line defects	390
25.5.	Closure head adapter cracking	392
26.	Some French precursors	399
26.1.	Incidents	400
26.2.	Latent nonconformances revealed by inspections	411
27.	Periodic safety review	419
27.1	Safety review methodology	420
27.2	Fessenheim and Bugey plant safety reviews	423
27.3.	Safety review of the CP1 and CP2 standardized 900 MWe plant series	430
28.	The international dimension	439
28.1	The IAEA standards and guides program	441
28.2	The Incident Reporting System	442
28.3	French-German comparisons	444
20.5.	Services proposed by the IAFA	446
28.5.	Plants of soviet design	450
29.	The next generation of reactors	461
29.1.	Setting up of French-German safety options	462
29.2.	Changes in safety objectives	463
29.3.	Application of the defense in depth concept	465
29.4.	Preliminary characteristics of the EPR project	466
29.5.	Illustration of defense in depth provisions	471

30. Safety considerations on other nuclear installations		473
30.1.	Safety organization changes at the CEA	477
30.2.	General safety approach	477
30.3.	Safety objectives, notion of acceptability	479
30.4.	Risk potentials	482
30.5.	Design bases	486
30.6.	Safety analysis of an installation	495
30.7.	Operating safety	500
30.8.	Plant end of life	504
30.9.	Conclusion of this chapter	506
Con	clusion	507
App	endix A - Basic safety rules	509
A .1	Rules concerning pressurized water reactors (June 1995)	509
A.2	Rules concerning basic nuclear installations	
	other than reactors (June 1995)	511
Арр	Appendix B - Regulatory texts related to quality	
B.1.	Order of August, 10, 1984	513
B.2.	Circular of August, 10, 1984	520
Арр	endix C - French nuclear power plants	533
C.1.	Graphite-moderated, gas-cooled reactors (GCR)	533
C.2.	Heavy water reactor (HWR)	534
C.3.	fast breeder reactors (FBR)	535
C.4.	Pressurized water reactor (PWR)	535
App	endix D - Basic Nuclear Installations	539
D.1.	Experimental reactors in service	539
D.2.	Fuel cycle basic nuclear installations	540
D.3.	Other CEA basic nuclear installations	541
D.4.	Other nuclear installations	542
D.5.	Particle accelerators considered as basic nuclear installations	542

Introduction

Nuclear installations present a specific risk in that they all contain, by definition, more or less substantial quantities of radioactive products. These can result in the exposure of individuals, populations or the environment to ionizing radiation and the consequences thereof. Nuclear installations for electricity generation fall, of course, in this category.

Other sources of energy also involve risks, but our present purpose is not to draw comparisons. Moreover, we are well aware of public sensitivity in this respect, where radioactivity effects are associated far more with the military explosions of Hiroshima and Nagasaki, and now with Chernobyl, than with natural radioactivity or the benefits of radiotherapy. Our intention here is simply to present the methods and concepts used in the nuclear industry to ensure a satisfactory safety level for this activity.

Safety results from a set of technical and organizational measures taken at all stages in the life of an installation to ensure that its operation and, more generally speaking, its very existence, present a sufficiently low-level risk as to be deemed acceptable for the staff, the general public and the environment.

So what is actually involved is:

- ensuring normal operating conditions which are conducive neither to excessive exposure of workers nor to release to the environment of radioactive waste with a high activity level
- incident and accident prevention
- limiting the consequences to workers, populations and the environment of any incidents and accidents which could nevertheless occur.

This gives rise to provisions covering plant operation, but also its design, construction and decommissioning.

It is to be noted that the idea of an acceptable risk is not grounded on clearly defined, absolute criteria, but is rather the result of choices of a sociopolitical nature which may evolve over a period of time and may differ from one country to another, depending on local economic conditions. In this context, it is the role of the technicians to propose, but the final decision is based on political assessments integrating other contingencies.

For any given installation, the process begins with identification of the nature and extent of the risks entailed. Only after this has been done can methods for ensuring safety be defined and analyzed.

Several decades have now elapsed since nuclear plant construction and operation began in France. The reactors of the first type used in France, which were natural uranium-fuelled, graphite-moderated and CO_2 -cooled, have now all been shut down. Several of the installations currently in service were built to earlier standards, at least as regards technological developments and safety issues.

Most of the pressurized water reactors presently operating in France were designed on the basis of the American plants under construction at the end of the sixties and the beginning of the seventies, at a time when world experience in this type of undertaking was limited.

It is consequently not surprising that, although the basic principles defined at the outset of a project are not easily called into question, safety criteria approaches and analysis methods have considerably altered over the period of time involved.

Now that substantial experience has been acquired, we are, or course, able to check whether the principles underlying the initial approach are still satisfactory and to compare actual plant behavior with the estimates made beforehand. The world's two most dramatic nuclear accidents, Three Mile Island in 1979 and Chernobyl in 1986, figure largely in this analytical process, without however overshadowing the many minor difficulties to be contended with in the daily running of an installation.

Rather than describe current approaches to safety from a static status angle, we have opted for a partly historical presentation which reveals more clearly their dynamic and evolutive character. We shall base most of this presentation on the pressurized water reactors operated in France, although many other examples will also be used.

In this document, we shall consider successively:

- the deterministic approach, which is the main safety approach method
- safety analysis methods based on accident analysis
- the enhancement of these methods by development of the probabilistic safety approach and preparation for the management of particularly severe accident situations
- operating feedback
- subsequent evolution paths and the international dimension.

Each subject will be illustrated with a number of examples.

General topics such as the human factor or the importance of quality, could have been dealt with in separate chapters, but we have preferred, on the contrary, to avoid isolating them so that they can be referred to in the many contexts directly concerned by them.

Finally, we shall insofar as possible base our discussion of the elements of this approach on general aspects, applicable to all nuclear installations, for it will be seen that if responses in each case must be adapted to specific potential risks, the same types of questions re-occur and have to be systematically examined.

In order to situate the purpose of nuclear safety, we shall summarize in an introductory chapter the biological effects of radiation together with the main basic principles of radiation protection. This should enable the reader to better comprehend the extent of the consequences of the phenomena discussed.

Similarly, safety awareness and practice involve a sharing of responsibilities defined by regulatory texts. In order to conserve the technical and philosophical rather than administrative disposition we have adopted, the second chapter will describe the organizational principles governing relations between the safety partners. This will give rise to reflections on the determination of "acceptable" risks and on what is now referred to as Safety Culture, to which we trust the present document will contribute. This page intentionally left blank

Radioactivity and the biological effects of ionizing radiation

At the International Conference on the Safety of Nuclear Energy: Strategy for the Future, held in Vienna (Austria) on September 2-6, 1991, it was deemed advisable to present the basic biological effects of radioactivity to enable at least overall understanding, with a view to prevention, of possible radiological consequences of abnormal situations and of the basic principles of radiation protection. It is on the same grounds that the present work begins with a chapter on this subject. The text is adapted from the conference document prepared by an international working party entrusted with presenting the basic principles of safe use of nuclear energy. It draws extensively on the conclusions formulated by the organizations competent on this question, the International Commission on Radiological Protection (ICRP) and notably its publication No. 60, but also on certain more recent observations on the populations exposed following the Chernobyl disaster.

1.1. Units used

The radioactivity unit is the becquerel (Bq), equal to 1 disintegration per second. As this unit is extremely small, multiplying prefixes are often employed: mega (M) = 10^6 , giga (G) = 10^9 or tera (T) = 10^{12} .

The former unit is the curie (Ci), equal to $3.7 \ 10^{10}$ disintegrations per second or becquerels and historically defined as the activity of one gram of radium 226. Since this unit is relatively large, minimizing prefixes were used: micro (μ) = 10⁻⁶, nano (n) = 10⁻⁹, pico (p) = 10⁻¹².

 $1 \text{ Ci} = 37 \ 10^9 \text{ Bq or } 37 \text{ GBq};$

$$1 \text{ Bq} = 27 \ 10^{-12} \text{ Ci or } 27 \text{ pCi.}$$

Two units are used to express radiation effects on the human body. The gray (Gy) expresses the energy deposited in matter by a particle or radiation. 1 gray = 1 joule per kilo of material. It is the SI absorbed dose unit, replacing the former rad (1 Gy = 100 rad).

The shorter the path of each energy depositing particle, the greater will be the potential noxiousness of the absorbed dose.

For comparison purposes, quality factors are used to express absorbed doses of any type in terms of dose equivalents for reference X and γ radiation effects. This quality factor is, by definition, 1 for electrons and X and γ radiation, 20 for alpha particles and heavy nuclei and from 5 to 20 for neutrons and protons. The dose equivalent is expressed in sievert (Sv). The former unit is the rem (1 Sv = 100 rem).

Each tissue and organ has a specific sensitivity to cancer risks. For 100 cancers observed following homogeneous external exposure, there are 12 lung cancers, 5 breast cancers and 1 skin cancer, for instance. So a weighting (or sensitivity) factor is introduced to transpose the dose equivalent into an effective dose.

In the event of internal contamination, irradiation continues until the radioelement responsible has been removed. In this case, we calculate the dose commitment due to the contamination, extrapolated over the next 50 years. In accordance with current regulations, this calculation is performed at the time of contamination. Effective and committed doses are also expressed in sievert.

In accordance with regulatory practice, the term "dose" shall generally refer in what follows to an effective dose.

The relationship between a becquerel and the corresponding gray or sievert number depends on the particle or radiation energy and its mode of interaction with the substance considered and, in the case of internal contamination, on the length of time the radioelement stays inside the organism.

1.2. Natural radioactivity

Since the origin of man, humanity has been exposed to a wide spectrum of natural ionizing radiation. This exposure is due to cosmic radiation, gamma radiation from the earth and radioactive products naturally present in the human body, originating from food and water (mainly lead 210 and potassium 40) and from inhalation (mainly radon 222).

The annual dose due to these natural sources averaged over all populations of the globe is between 2 and 3 millisievert (mSv), but varies between 1 and 5 mSv according to the place considered. Under average conditions, the contributions of the cosmic rays, the gamma rays from the ground and ingested products are approximately the same and equal to 0.3 to 0.4 mSv. So the fraction due to radon inhalation is much larger, representing up to 40% of this natural irradiation. It varies considerably according to place, dwellings, living conditions.

- Other experience (operating experience of basic nuclear facilities, "standard practice") has enabled the processes or codes used to be validated; in such event, it shall be systematically determined that the assumptions are correct and fall within the scope of such processes or codes.
- Insofar as it is possible to make properly any necessary changes, the facility commissioning tests may be sufficient to confirm the achieved results; the number of cases in this category shall remain sufficiently limited so that possible changes necessary at an advanced stage of construction remain limited.
- The studies for which there are no technical control means independent of those used and a list of which is included as such with all necessary support in the safety report.

In these three cases, the procedures for the follow up of the studies provide evidence, with all necessary support, of the extent of the areas in which the special control measures are not implemented.

Finally, studies aiming only at improving assessment of the available tolerances with respect to situations not allowed for in the design are subject to adapted procedures; in such event, the use of simplified confirmation calculations is no longer required but they shall be used insofar as possible.

Article 15

For certain activities initiated before filing of the basic nuclear facility construction permit application, and in particular for preliminary plan activities, the Order's provisions may be adapted or not applied entirely insofar as no action difficult to reverse under the decisions made for the safety of the future facility can result therefrom.

Article 16

(mentioned as a reminder).

Article 17

This article takes into account the diversity of basic nuclear facilities (power reactors, research reactors, fuel enrichment, manufacturing and reprocessing plants, waste storage centers, accelerators, irradiators, laboratories, etc.), the diversity of the phases in which they now stand and the time necessary for the establishment, if need be, of new measures.

The Order is obviously not applicable to activities completed on the date of publication of the Order in the Official Journal. It applies however as provided in this article to future and continuing activities.

Article 18

Requests for waiver of the Order will be handled by the Head of the SCSIN who will consult, insofar as need be, the competent experts or groups of experts, in particular the standing groups responsible for studying the technical aspects of the safety of nuclear facilities.

Article 19

Like the other provisions of the regulation covering basic nuclear facilities, the order applies in the strict sense only to the basic nuclear facilities operated or to be operated in France.

However, a supplier may happen to perform, or make others perform, in France, a significant part of the activities devoted to design or construction of a nuclear facility located or to be located abroad. If the involved supplier so requests, measures will be taken to enable provisions of the order enforceable in France to be applied under the same conditions as if the nuclear facility were to be installed in France, considering the supplier as an owner, as defined in the Order, during the design and construction period. The Head of the SCSIN shall then be instructed to enforce the Order.