
Pharmacologie de la douleur

Sous la direction de Pierre Beaulieu

Catalogage avant publication de Bibliothèque et Archives Canada

Vedette principale au titre:

Pharmacologie de la douleur Comprend des réf. bibliogr. et un index.

ISBN 2-7606-1951-6

- 1. Douleur Chimiothérapie. 2. Douleur. 3. Douleur Traitement.
- 4. Pharmacologie clinique. 5. Analgésiques. I. Beaulieu, Pierre, 1958-.

RB127.P42 2005 616'.0472 C2005-941221-6

Dépôt légal : 4° trimestre 2005 Bibliothèque nationale du Québec © Les Presses de l'Université de Montréal, 2005

Les Presses de l'Université de Montréal remercient de leur soutien financier le ministère du Patrimoine canadien, le Conseil des Arts du Canada et la Société de développement des entreprises culturelles du Québec (SODEC).

IMPRIMÉ AU CANADA EN OCTOBRE 2005

TABLE DES MATIÈRES

PREMIÈRE PARTIE ASPECTS FONDAMENTAUX

CHAPITRE 1	Neurophysiologie de la douleur Serge Marchand	3
CHAPITRE 2	Pharmacologie des opioïdes Marcel Chauvin et Pierre Beaulieu	39
CHAPITRE 3	Pharmacologie des anti-inflammatoires non stéroïdiens Dominique Fletcher	79
CHAPITRE 4	Système nerveux autonome et douleur Alex Cahana et Alain Forster	109
CHAPITRE 5	Pharmacologie des cannabinoïdes Josée Guindon et Pierre Beaulieu	129
CHAPITRE 6	Pharmacologie des anesthésiques locaux Jean-Xavier MAZOIT et Hélène BELOEIL	171
CHAPITRE 7	Pharmacologie des antidépresseurs et des anticonvulsivants Graciela Piñeyro et Mounia Azzi	213
CHAPITRE 8	Nouvelles approches pharmacologiques dans le traitement de la douleur Jean-Sébastien Walczak et Pierre Beaulieu	235
CHAPITRE 9	Les modèles animaux de douleur Hélène Héon	283
	DEUXIÈME PARTIE APPROCHE CLINIQUE	
CHAPITRE 10	Évaluation de la douleur Manon Choinière et Marie-Christine Taillefer	325

viii • PHARMACOLOGIE DE LA DOULEUR

CHAPITRE 11	L'analgésie placebo	
	Pierre Rainville, Julie Charron et Serge Marchand	353
CHAPITRE 12	Approche et traitement de la douleur aiguë	
	Pierre Drolet	381
CHAPITRE 13	Approche et traitement de la douleur neuropathique	
	Aline Boulanger	405
CHAPITRE 14	Approche et traitement de la douleur cancéreuse	
	Dominique Dion, François Fugère et	
	Geneviève Dechêne	439
CHAPITRE 15	Particularités pharmacologiques	
	de la douleur en obstétrique	
	Fabien Lefebvre et Dan Benhamou	487
CHAPITRE 16	Particularités pharmacologiques de la prise	
	en charge de la douleur aiguë chez l'enfant	
	Isabelle Murat et Olivier Gall	507
CHAPITRE 17	Particularités pharmacologiques	
	de la douleur chez le patient âgé	F 2 7
	David Lussier et Louise Mallet	537
CHAPITRE 18	Bioéthique et douleur	
_	Michelle Pimont et Isabelle Ganache	559
Index		587

PRÉFACE

Voici un livre qui nous explique en détail le processus complexe qui génère la douleur et comment y faire face. Il s'agit d'un livre pour comprendre, pour réfléchir, pour apprendre, mais aussi pour admirer les progrès spectaculaires de la biologie et l'ingéniosité de l'être humain, qui déchiffre patiemment cette mécanique admirable, établie et affinée au fil du temps mesuré aux dimensions géologiques. La visée didactique est ici réussie: biologistes, médecins, infirmières, étudiants qui souhaitent mieux comprendre, et mieux soigner, y passeront des heures passionnantes. Au fil des concepts et malgré la complexification rapide des mécanismes envisagés et des interventions pharmacologiques, ils entreront dans ce domaine fascinant de la connaissance. Mais ils iront assurément plus loin, car ce livre débouche ultimement sur une méditation de la complexité de l'organisation de l'être humain.

Une machine à lutter contre le mal

Le lecteur est invité à regarder les récepteurs localisés dans un réseau de fibres qui surveillent sans cesse nos tissus. Il les voit répondre aux agents nociceptifs et il écoute la sonnette d'alarme tirée par l'irruption anormale des produits nouvellement mélangés dans le désordre de la soupe inflammatoire. Ces produits normaux, mais anormalement distribués ou accrus par la lésion, soulèvent dans les câbles nerveux des vagues de dépolarisation qui migrent vers les neurones médullaires. Ces courants suscitent là des réflexes de retraits musculaires, activent les centrales locales de surveillance, modulent le trafic local de neurotransmetteurs qui rendent ces neurones plus sensibles et plus instables. La loupe du biologiste, fixée sur ce microcosme, décèle de mieux en mieux les mécanismes qui ont protégé la vie des individus en les soustrayant à l'agression qui fait mal. La main du pharmacologue invente et guide vers des médicaments qui cherchent à retirer l'aiguillon entêté qui s'impose.

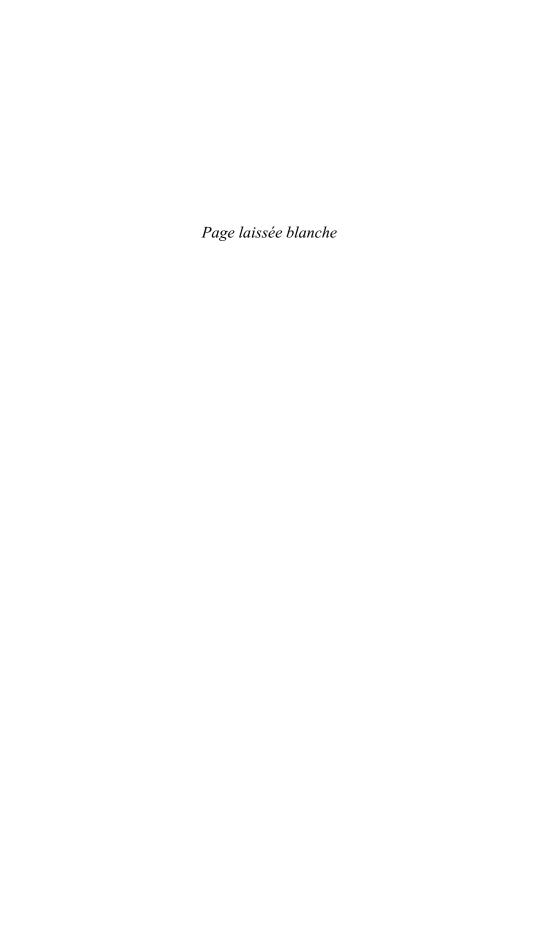
Une partie de ces informations bouillonnantes monte vers le cerveau en empruntant les voies spinales ascendantes. Là, l'information hurlante semble se

diluer, se disperser dans une immense mer de neurones aux multiples connexions. On ne voit maintenant que de grandes entités se répondre de façon organisée, des ensembles de plusieurs milliers de cellules ébaucher des dialogues stratégiques, s'échanger des influences, intégrer à distance les informations douloureuses, stocker celles-ci dans la mémoire, puis envoyer des influences régulatrices, pour contrôler le trafic délirant qui agite les neurones médullaires débordés par l'urgence du stress. Tout un bal de molécules s'anime et l'information se fait, se module, s'exalte ou se défait. L'influence suppressive des voies descendantes vient alors mettre de l'ordre dans le désordre auto-entretenu de la périphérie. Tout cela demeure largement transparent à la conscience, d'où émerge seulement une sensation très transformée de douleur, qui s'estompe avec le temps ou bien qui demeure et prend alors place dans la vie de celui qui a mal.

À chaque étape, on peut infléchir, substituer, supprimer, inhiber, potentialiser les chaînes d'événements pour en altérer le cours. La pharmacologie intervient dans la danse de molécules et cherche à restaurer les équilibres. Elle cherche à influencer autant le mal que le souvenir du mal et ses conséquences : c'est bien le sujet de ce livre.

Une machine qui fait mal

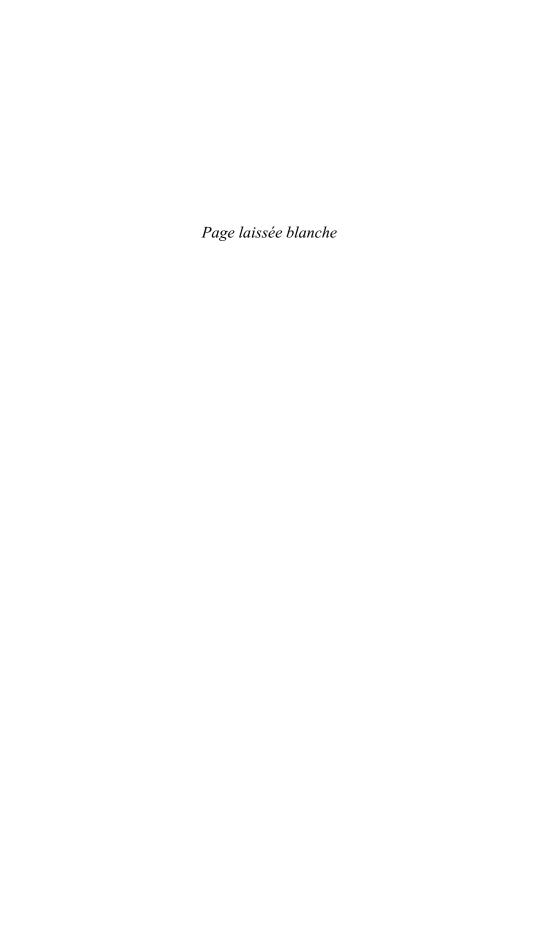
On sent bien dans ce portrait que, même quand on n'a pas mal, un potentiel de douleur est toujours là, caché sous le manteau des équilibres. On devine que le bien-être est toujours le résultat d'un équilibre entre le flot incessant d'informations douloureuses ascendantes et d'influences suppressives d'égale importance descendant du cerveau. Tant qu'un équilibre entre ces forces opposées est maintenu, il n'y a pas de douleur perçue. Si les signaux qui montent s'accroissent et débordent ceux qui descendent, ou si l'action suppressive du cerveau devient insuffisante, la douleur apparaît: dans le premier cas, on admire une réponse de protection utile, par exemple pour éviter la brûlure et protéger l'intégrité de l'organisme; mais dans le deuxième cas? C'est comme si la douleur devenait autogénérée par suite d'un déficit endogène de l'action suppressive normale du cerveau, sans rapport avec un événement traumatique extérieur. Cela devient un phénomène douloureux mystérieux, largement incompris, qui vient empoisonner la vie de beaucoup de patients fibromyalgiques notamment.


Et la souffrance?

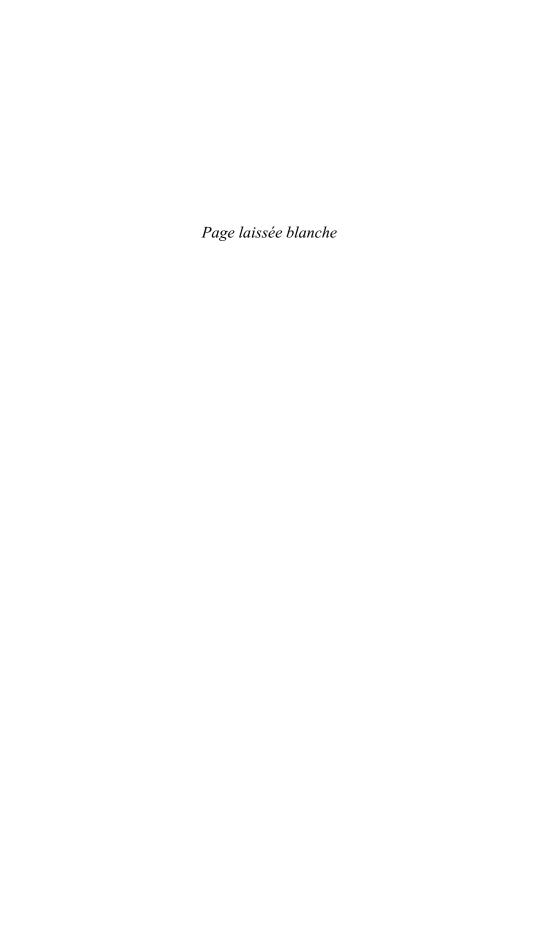
On sent bien que des dérives plus graves sont possibles, que les communications entre les constellations de neurones peuvent aussi déraper, que l'intégration de la douleur peut devenir excessivement prégnante, que la souffrance peut apparaître, à bon ou à mauvais escient. Toute une biochimie de la souffrance potentielle est ici présente et elle est parfois cruellement activée dans ce cerveau si complexe. Toute une pharmacologie la suit. À la fois trace et avant-garde des victoires de la connaissance, elle génère un savoir qui appelle un savoir déjà en

gestation. Nous y découvrons des outils efficaces qui incarnent cette réflexion créatrice émanant de l'étude de la structure fonctionnelle même du vivant. Une biochimie du bonheur existe aussi, qui guide souvent les efforts de la recherche. Voilà toute une créativité scientifique en pharmacologie dont les réalisations transcendent radicalement la biologie.

Mais ici, c'est tout l'humain qui vit et qui souffre, qui est le siège des processus douloureux. Nul manuel de biologie humaine, pour sophistiqué qu'il soit, ne peut présenter en termes moléculaires le bonheur, ni le malheur, ni la souffrance. Il faut alors fermer le livre et écouter le chant qui monte en nous et chez les autres quand la souffrance partagée devient notre lien de fraternité le plus précieux.


Novembre 2004 Patrick Vinay Doyen de la Faculté de médecine, 1995-2003, Université de Montréal

REMERCIEMENTS


Je tiens à remercier chaleureusement l'ensemble des collaborateurs qui ont participé à cet ouvrage et sans qui rien n'aurait été possible.

Je remercie plus particulièrement Sandra Soucy des Presses de l'Université de Montréal pour son aide éditoriale et René Bonenfant de sa confiance. Un gros merci à Francine Legault pour son aide technique et d'infographie dans la confection du livre. Mes remerciements vont également à Valeant Pharmaceuticals International et Pfizer Canada Inc. qui ont généreusement participé à la publication de ce livre. Finalement, je tiens à rendre hommage au docteur Patrick Vinay pour avoir accepté d'écrire, et ceci avec une extrême sensibilité, la préface de cet ouvrage. Merci d'avance aux lectrices et lecteurs de nous faire part de leurs commentaires et remarques qui pourraient aider à améliorer le livre lors d'une prochaine édition.

PREMIÈRE PARTIE

Aspects fondamentaux

CHAPITRE 1

Neurophysiologie de la douleur

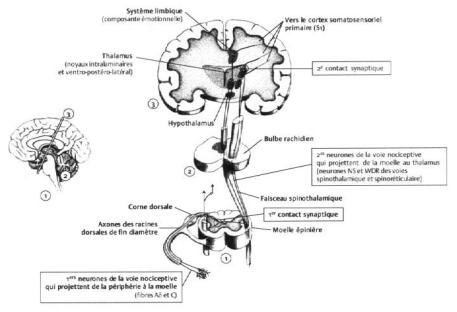
SERGE MARCHAND

Table des matières

1.	De l	e la nociception à la douleur		
2.	Nocicepteurs		6	
	2.1	Afférences nociceptives	7	
		2.1.1 Fibres Aβ	7	
		2.1.2 Fibres Aδ	9	
		2.1.3 Fibres C	9	
	2.2	Première et seconde douleur	9	
	2.3	Sommation temporelle et sommation spatiale	10	
3.	Moelle épinière		12	
	3.1	Neurones nociceptifs spécifiques	12	
	3.2	Neurones nociceptifs non spécifiques ou		
		à large gamme dynamique	12	
4.	Hyp	peralgésie primaire et secondaire	13	
5.	Voie	es de la douleur	15	
6.	Org	anisation du thalamus	16	
7.	Cortex		18	
	7.1	Composante sensori-discriminative dans le cortex		
		somatosensoriel primaire (S1)	18	
	7.2	Composante sensori-discriminative dans le cortex		
		somatosensoriel secondaire (S2)	19	
	7.3	L	19	
	7.4	Composante motivo-affective de la douleur		
		du cortex cingulé antérieur (CCA)	20	
	7.5	Composante motivo-affective de la douleur		
		du cortex insulaire (CI)	20	
8.	Rôle	e des hormones sexuelles dans la douleur	21	

9.	Méc	anismes endogènes de contrôle de la douleur	22
	9.1	Mécanismes spinaux	23
	9.2	Mécanismes descendants : les contrôles inhibiteurs diffus	
		nociceptifs (CIDN)	25
	9.3	Contrôle des centres supérieurs	27
10.	App	Approches mécanistiques du traitement de la douleur	
	10.1	Douleurs nociceptives	28
	10.2	Douleurs inflammatoires	30
	10.3	Douleurs neurogènes	30
	10.4	Douleurs fonctionnelles	30

L'évolution des connaissances sur les bases neurophysiologiques de la douleur nous permet de mieux saisir la complexité du phénomène douloureux. Nous savons aujourd'hui que, de la stimulation nociceptive jusqu'à la perception, il y a toute une série de mécanismes endogènes qui influence notre expérience de la douleur. Ces mécanismes endogènes excitateurs et inhibiteurs augmentent ou réduisent le signal nociceptif, ce qui se traduit par plus ou moins de douleur. Une vision purement linéaire n'est donc plus suffisante pour comprendre la douleur ou pour expliquer comment une douleur peut apparaître ou même persister sans blessure apparente. Afin de bien comprendre la neurophysiologie de la douleur, il faut s'intéresser aux voies afférentes qui conduisent l'influx nociceptif de la périphérie vers les centres supérieurs, mais il faut aussi porter une attention particulière aux mécanismes endogènes de modulation de la douleur qui se retrouvent à tous les niveaux du système nerveux central.


Dans ce chapitre, nous ferons le tour des différentes étapes du transport de l'information nociceptive et des systèmes de modulation de l'information nociceptive afin de souligner à quel point le traitement pharmacologique de la douleur s'appuie sur notre compréhension des bases neurophysiologiques de la douleur.

1. De la nociception à la douleur

Afin de s'initier aux connaissances neurophysiologiques nécessaires à la compréhension de la pharmacologie de la douleur, nous allons suivre le signal chimioélectrique des fibres nerveuses de la périphérie jusqu'aux centres supérieurs. Ceci nous permettra de mieux comprendre les différentes étapes du transport et de la modulation de l'information nociceptive. Nous aborderons ensuite les mécanismes endogènes de contrôle de la douleur aux différents niveaux du système nerveux central.

Comme nous pouvons le voir à la figure 1.1, une stimulation nociceptive de nature mécanique, chimique ou thermique recrutera des nocicepteurs qui conduiront l'information, par le premier neurone ou neurone primaire, jusqu'aux cornes postérieures de la moelle. Une fois arrivée dans les cornes postérieures de la moelle, il y aura le premier contact synaptique avec le deuxième neurone ou neurone secondaire. Le neurone secondaire croisera immédiatement dans la moelle en passant sous le canal de l'épendyme pour former la voie spinothalamique en position ventrolatérale de la moelle et conduira l'information jusqu'à différentes régions des complexes ventrobasal et centromédian du thalamus somatosensoriel où il fera un contact synaptique avec le troisième neurone ou neurone tertiaire. Il est important de retenir que le neurone secondaire fera aussi des contacts synaptiques en passant dans différentes régions du tronc cérébral dont la substance grise périaqueducale (SGPA) et les noyaux du raphé (nucleus raphe magnus (NRM)) dont nous verrons plus en détails les fonctions dans la section sur la modulation de la douleur. Le neurone tertiaire conduit ensuite les

Figure 1.1 Voies de la douleur : de la périphérie au cortex

D'après Bear et coll., 19971

La principale voie de conduction de la douleur est composée de trois neurones. Le neurone primaire provient de la périphérie (fibres Aô ou C). Il fait un contact synaptique avec le neurone secondaire qui est soit un neurone nociceptif spécifique ou un neurone nociceptif non spécifique. Les fibres de ces seconds neurones croisent immédiatement dans la moelle pour se projeter vers les noyaux latéraux du thalamus par la voie spinothalamique ou vers différentes structures du tronc cérébral et les noyaux natéraux ou thalamus par la voie spinoréticulaire. Un deuxième contact synaptique se fait aux noyaux latéraux ou médians du thalamus. Les neurones des noyaux latéraux projettent vers les centres corticaux sensoridiscriminatifs du cortex somatosensoriel, tandis que les neurones des noyaux médians projettent vers les centres corticaux motivo-affectifs du système limbique.

NS: neurones nociceptifs spécifiques

WDR: neurones ayant un spectre dynamique étendu (Wide Dynamic Range)

informations nociceptives vers différentes régions du cortex somatosensoriel et certaines structures limbiques.

Chaque fois que l'un des trois neurones conduisant l'information nociceptive fait un contact synaptique, il y a intégration de l'information et celle-ci subit des influences inhibitrices ou excitatrices. Ce sont ces régions d'intégrations qui sont les cibles de la plupart des médicaments antalgiques.

2. Nocicepteurs

Une blessure de nature mécanique, thermique ou chimique produira une cascade d'événements provoquant la libération de substances potentiellement algésiogènes. Cette soupe inflammatoire pourra produire une hyperalgésie primaire et secondaire. De nombreuses substances sont relâchées à la suite de cette blessure^{2,3,4,5}, dont certaines par les cellules sanguines (bradykinine, prostaglandines,

histamine, sérotonine, adénosine triphosphate) mais aussi par les macrophages (interleukines, interféron, facteurs de croissance tumorale (TNF)). Il est important de noter que la substance P et le peptide lié à a calcitonine (CGRP), qui sont clairement associés à l'activité nerveuse nociceptive dans le système nerveux central, plus particulièrement au niveau de la moelle, jouent aussi un rôle important dans les mécanismes périphériques de la nociception en émettant des substances pro-inflammatoires vers la périphérie, favorisant ainsi une inflammation neurogène².

Il n'existe pas, à proprement parler, de récepteur de la douleur, mais plutôt des terminaisons nerveuses libres qui se retrouvent sur toute la surface du corps mais aussi dans les muscles, les tendons et les viscères. Ces terminaisons nerveuses libres sont reliées à des fibres nerveuses à conduction plus ou moins rapides, les fibres A δ et C. Il est donc fréquent que nous définissions les nocicepteurs par les propriétés des fibres nerveuses auxquelles ils sont reliés.

Afférences nociceptives 2.1

Nous pouvons diviser en trois classes les fibres nerveuses somatiques (figure 1.2 et tableau 1.1). Les fibres AB sont de grosses fibres myélinisées à conduction rapide qui encodent, dans des conditions normales, les informations non nociceptives mais qui participent aussi à la modulation de la douleur. Les fibres Aδ sont des fibres myélinisées de plus petit calibre que les fibres Aß qui conduisent relativement rapidement. Elles ont un seuil de recrutement élevé et conduisent donc des informations nociceptives rapides et précises. Finalement, les fibres C sont de petites fibres amyéliniques, donc lentes, qui répondent préférentiellement à des stimulations nociceptives et donnent des informations relativement lentes et diffuses. Voyons plus en détail les caractéristiques et le rôle de chacune de ces fibres.

2.1.1 Fibres AB

Les fibres $A\beta$ jouent principalement un rôle de conduction des informations non nociceptives comme le toucher léger. Ce sont des fibres myélinisées de gros calibre qui conduisent rapidement (35 à 75 m/s). Nous savons que le recrutement sélectif des fibres AB, en plus de conduire les informations de stimulations non nociceptives, permettra de recruter dans la substance gélatineuse des cornes postérieures de la moelle des interneurones inhibiteurs qui bloqueront les informations nociceptives en provenance du même segment de la moelle ou du même dermatome. C'est ce mécanisme qui est décrit dans la théorie du portillon⁷ sur laquelle nous reviendrons un peu plus loin. En plus de jouer un rôle d'inhibition localisée lors d'une stimulation somesthésique légère, les fibres AB semblent jouer un rôle tonique de régulation des informations nociceptives puisque le blocage sélectif des fibres de gros calibre produit une augmentation de la douleur à la suite d'une stimulation nociceptive8.

Graciela Piñeyro MD, PhD

Département de psychiatrie et de pharmacologie, Centre de recherche Fernand-Seguin, Montréal, Québec, Canada

Pierre Rainville PhD

Faculté de médecine dentaire – stomatologie, Université de Montréal, Québec, Canada

Marie-Christine Taillefer PhD Institut de cardiologie de Montréal, Québec, Canada

Jean-Sébastien Walczak DEES

Département de pharmacologie, Université de Montréal, Québec, Canada

Extrait de la publication