Éric AKKERMANS - Gilles MONTAMBAUX

Physique mésoscopique des électrons et des photons

Extrait de la publication

Éric Akkermans et Gilles Montambaux

Physique mésoscopique des électrons et des photons

SAVOIRS ACTUELS

EDP Sciences/CNRS Éditions

Illustration de couverture : Intensité réfléchie (albédo) par un échantillon de billes de polystyrène, obtenue en moyennant sur la position des billes. Elle est maximale au centre, c'est-à-dire dans la direction de rétrodiffusion. La courbe donne la dépendance angulaire de l'intensité. Elle présente le cône caractéristique de la rétrodiffusion cohérente (Photo courtoisement fournie par Georg Maret).

© 2004, EDP Sciences, 17, avenue du Hoggar, BP 112, Parc d'activités de Courtabœuf, 91944 Les Ulis Cedex A et

CNRS ÉDITIONS, 15, rue Malebranche, 75005 Paris.

Tous droits de traduction, d'adaptation et de reproduction par tous procédés réservés pour tous pays. Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans l'autorisation de l'éditeur est illicite et constitue une contrefaçon. Seules sont autorisées, d'une part, les reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective, et d'autre part, les courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (art. L. 122-4, L. 122-5 et L. 335-2 du Code de la propriété intellectuelle). Des photocopies payantes peuvent être réalisées avec l'accord de l'éditeur. S'adresser au : Centre français d'exploitation du droit de copie, 3, rue Hautefeuille, 75006 Paris. Tél. : 01 43 26 95 35.

ISBN EDP Sciences 2-86883-712-3 **ISBN** CNRS Éditions 2-271-06263-2

Avant-propos

L'étude de la propagation des ondes dans les milieux désordonnés a donné L'lieu depuis plus de vingt ans à une somme énorme de travaux. Ceux-ci ont contribué à définir un vaste domaine aux contours de plus en plus flous qui recouvre à la fois les problèmes de localisation (faible ou forte), de physique mésoscopique, des effets de l'interaction entre électrons dans les métaux, etc. De plus, certains effets n'étant pas spécifiques à un type particulier d'ondes, des approches se sont développées indépendamment en physique de la matière condensée, en optique, en physique atomique et en acoustique.

Il existe dans la littérature de nombreuses monographies et articles de revue d'excellente qualité traitant en détail tel ou tel de ces différents aspects. Notre but, dans cet ouvrage, n'est pas de nous situer au même niveau que ces contributions mais plutôt de chercher, d'une part, un dénominateur commun à tous ces effets et, d'autre part, de permettre au lecteur non spécialiste d'avoir en main les outils nécessaires à l'étude des travaux effectués dans ce domaine.

Notre premier souci a donc été de présenter au moyen d'un formalisme unique, une description des phénomènes physiques importants, cette description étant indépendante du type d'onde considéré (électrons, ondes lumineuses, etc.). À cette fin, nous avons d'abord repris en détail dans le cadre du modèle dit « de désordre gaussien », le calcul des quantités moyennes à une particule : densité d'états, temps moyen de collision élastique pour les deux classes les plus importantes d'équation d'ondes, à savoir l'équation de Schrödinger et l'équation de Helmholtz scalaire. Nous avons, autant que possible, essayé de préciser l'idée, centrale dans ce domaine, de diffusion multiple sur des diffuseurs effectifs indépendants dont la section efficace peut être obtenue dans le cadre de la théorie de la diffusion à une particule.

Les propriétés physiques généralement mesurées dans les milieux diffusants dépendent pour la plupart de la probabilité quantique décrivant la propagation d'un paquet d'onde d'un point à un autre. Cette quantité est donc fondamentale et nous avons consacré tout le chapitre 4 à son étude détaillée. On voit apparaître en particulier, les contributions classique (diffuson) et cohérente (cooperon) à cette probabilité, qui sont à la base des différents phénomènes physiques observés comme les corrections de localisation faible à la conductance électronique, la magnétorésistance négative en champ magnétique, la rétrodiffusion cohérente des ondes lumineuses, mais aussi les fluctuations universelles de conductance et de speckle ainsi que les effets mésoscopiques sur le magnétisme orbital.

Il apparaît donc que tous ces effets découlent d'un même principe qui s'exprime essentiellement à l'aide d'une seule quantité : la probabilité de diffusion quantique et son analogue optique. Par contre, en dépit de ce dénominateur commun aux phénomènes optiques et électroniques, chaque domaine a sa spécificité qui permet des approches et des méthodes d'investigation complémentaires. Ainsi, l'étude des systèmes électroniques permet, grâce à l'utilisation d'un champ magnétique ou d'un potentiel vecteur, de modifier continûment la phase relative des fonctions d'onde électroniques, ce qui n'a pas d'équivalent en optique. En revanche, en optique, il est possible de modifier l'angle des faisceaux incidents et émergents, et à partir de cette spectroscopie angulaire, de remonter aux corrélations entre les différents canaux d'injection.

Nous avons autant que possible souhaité garder à cet ouvrage un caractère de manuel accessible au plus grand nombre à partir d'un niveau DEA. Nous avons dû aussi choisir de mettre un certain nombre de problèmes de côté. Citons par exemple l'étude des « points quantiques », les relations entre transport électronique et propriétés spectrales, la localisation forte et la transition métal-isolant d'Anderson, les propriétés de cavités électroniques balistiques où la complexité ne résulte pas du désordre mais de la forme de la cavité qui confère aux électrons une dynamique chaotique, les interfaces entre métal normal et métal supraconducteur, etc. Ces différents aspects montrent la richesse de ce qu'il est convenu d'appeler maintenant la « physique quantique mésoscopique » à laquelle cet ouvrage constitue une première introduction.

Remerciements

Nous tenons à exprimer nos remerciements à tous ceux qui, à divers titres, nous ont aidés dans la réalisation de cet ouvrage, par des discussions, des critiques ou des encouragements : O. Assaf, H. Bouchiat, J. Cayssol, C. Cohen-Tannoudji, N. Dupuis, D. Estève, A. Georges, S. Guéron, B. Huard, M. Kouchnir, R. Maynard, F. Piéchon, H. Pothier, B. Reulet, B. Shapiro, D. Ullmo, B. van Tiggelen, J. Vidal, E. Wolf. Nous souhaitons exprimer tout particulèrement notre reconnaissance à C. Texier pour ses innombrables commentaires, réflexions, suggestions, corrections qui ont considérablement amélioré la qualité de cet ouvrage. Merci aussi à G. Bazalitsky qui a réalisé la plupart des figures avec beaucoup de dévouement et à Y. Dufour pour l'impression des multiples versions préliminaires. Les moments de doute ne nous ont pas été épargnés au cours de ces cinq dernières années et le soutien d'Anne-Marie et de Tirza nous a alors été très précieux.

> Éric Akkermans, Gilles Montambaux, juillet 2004.

Avant-propos

Avertissements

• Dans l'essentiel de cet ouvrage on utilise le système d'unités internationales (MKSA), sauf dans le chapitre 13. La constante de Planck \hbar est prise généralement égale à 1 en particulier dans tout le chapitre 4. Dans les chapitres où nous pensons qu'il est important de la rétablir, nous l'avons indiqué en tête de chapitre. Afin d'alléger les notations, elle n'est parfois rétablie que de façon incomplète dans une même formule, en particulier lorsque la correspondance entre échelles de fréquence et d'énergie est évidente.

• Nous avons souvent été confrontés au problème des notations, qu'il n'est pas toujours évident de garder cohérentes dans un livre qui contient plusieurs domaines habituellement traités séparément.

• Nous avons choisi de ne pas faire une bibliographie exhaustive, mais de citer des articles, soit pour leur interêt pédagogique, soit parce qu'ils présentent un aspect particulier développé dans cet ouvrage (par exemple une question traitée en exercice).

Table des matières

Avant-propos

1	Intr	oductio	on : physique mésoscopique	1
	1.1	Interfér	rence et désordre	1
	1.2	L'effet	Aharonov-Bohm	5
	1.3	Cohére	nce de phase et effet du désordre	8
	1.4	Cohére	nce moyenne et diffusion multiple	10
	1.5	Cohére	nce de phase et auto-moyennage :	
		fluctua	tions universelles	14
	1.6	Corréla	tions spectrales	15
	1.7	Probab	ilité classique et croisements quantiques	17
		1.7.1	Croisements quantiques	19
	1.8	Les obj	ectifs	21
2	Éau	ations	d'onde dans les milieux aléatoires	35
_	2.1	Équatio	ons d'ondes	35
		2.1.1	Électrons dans un métal désordonné	35
		2.1.2	Équation des ondes électromagnétiques –	
			Équation de Helmholtz	36
		2.1.3	D'autres équations d'ondes	38
	2.2	Modèle	$\mathbf{e}^{\mathbf{r}}$ s de désordre \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	41
		2.2.1	Le modèle gaussien	42
		2.2.2	Impuretés localisées : le modèle d'Edwards	44
		2.2.3	Le modèle d'Anderson	46
	Com	plément	is du chapitre 2	
	C2.1	Théorie	e des collisions élastiques et diffusion simple	49
		C2.1.1	Forme asymptotique des solutions	50
		C2.1.2	Section efficace et flux diffusé	51

iii

	C2.2	2 Théorème de réciprocité	61						
	C2.3	B Diffusion de la lumière	64						
		C2.3.1 Diffusion Rayleigh classique	64						
		C2.3.2 Diffusion de Mie	67						
		C2.3.3 Diffusion atome-photon à l'approximation dipolaire \therefore	69						
3	Thé	orie de perturbation	79						
	3.1	Fonctions de Green	81						
		3.1.1 Fonction de Green de l'équation de Schrödinger	81						
		3.1.2 Fonction de Green de l'équation de Helmholtz	87						
	3.2	Développement de diffusion multiple	89						
		3.2.1 Équation de Dyson	89						
		3.2.2 Self-énergie	91						
	3.3	Fonction de Green et densité d'états moyennes	96						
	Com	aplément du chapitre 3							
	C3.1	Corrélations à courte portée	98						
4	Probabilité de diffusion quantique 10								
	4.1	Définition \ldots	104						
	4.2	Propagation libre	107						
	4.3	Approximation de Drude-Boltzmann	107						
	4.4	Propagation classique : approximation du diffuson	108						
	4.5	Approximation de diffusion	114						
	4.6	Propagation cohérente : le cooperon	116						
	4.7	Transfert radiatif	122						
	Com	apléments du chapitre 4							
	C4.1	Diffuson et cooperon dans l'espace réciproque	126						
		C4.1.1 $P_0(\boldsymbol{q},\omega)$	126						
		C4.1.2 Le diffuson	127						
		C4.1.3 Le cooperon	129						
	C4.2	Poîtes de Hikami et croisement de diffusons	133						
		C4.2.1 Les boîtes de Hikami	133						
		C4.2.2 Normalisation et coefficient de diffusion	138						
		C4.2.3 Croisement de deux diffusons	141						
	C4.3	Collisions anisotropes et libre parcours moyen de transport	146						
	C4.4	4 Corrélation des fonctions de Green diagonales	153						
	C4.5	ó Autres fonctions de corrélation	158						
		C4.5.1 Corrélations de fonctions de Green retardées	158						
		C4.5.2 Une identité de Ward \ldots	160						
		C4.5.3 Corrélations de fonctions d'ondes	161						

viii

5	Pro	priétés	de l'équation de diffusion	163			
	5.1	Introdu	lection	. 163			
	5.2	Quantit	tés caractéristiques	. 164			
		5.2.1	Noyau de la chaleur - Probabilité de retour à l'origine	165			
		5.2.2	Temps de récurrence	. 166			
	5.3	Diffusio	on libre	. 168			
	5.4	Diffusio	on dans une boîte périodique	. 171			
	5.5	Diffusio	on dans les systèmes finis	. 172			
		5.5.1	Temps de diffusion et énergie de Thouless	. 172			
		5.5.2	Conditions aux limites pour l'équation de diffusion	. 172			
		5.5.3	Volume fini et « mode zéro »	. 173			
		5.5.4	Diffusion dans un domaine anisotrope	. 174			
	5.6	Diffusio	on unidimensionnelle	. 175			
		5.6.1	L'anneau - conditions aux limites périodiques	. 176			
		5.6.2	Bords absorbants : fil connecté	. 177			
		5.6.3	Bords réfléchissants : fil isolé	. 179			
		5.6.4	Fil semi-infini	. 181			
	5.7	La mét	hode des images	. 181			
	Con	nplément	s du chapitre 5				
	C5.1 Validité de l'approximation de diffusion pour un milieu infini						
	C5.2	2 Équatio	on de transfert radiatif	. 186			
		C5.2.1	Intensité totale	. 186			
		C5.2.2	Intensité diffusée	. 188			
		C5.2.3	Conditions aux limites	. 190			
		C5.2.4	Tranche éclairée par une source étendue	. 193			
		C5.2.5	Milieu semi-infini éclairé par un faisceau collimaté	. 194			
	C5.3	3 Diffusio	on multiple dans un milieu fini	. 196			
		C5.3.1	Diffusion multiple dans un demi-espace :				
			le problème de Milne	. 196			
		C5.3.2	Diffusion dans un milieu fini	. 200			
	C5.4	4 Déterm	inant spectral	. 202			
	C5.!	5 Diffusio	on dans un domaine de forme quelconque -				
		Déveloj	ppement de Weyl	. 205			
	C5.6	3 Diffusio	on sur des graphes	. 208			
		C5.6.1	Déterminant spectral sur un graphe	. 208			
		C5.6.2	Exemples	. 211			
		C5.6.3	Thermodynamique, transport et déterminant spectral	214			
6	Déj	phasage	s	215			
	6.1	Déphas	sage et diffusion multiple	. 215			
		6.1.1	Généralités	. 215			
		6.1.2	Mécanismes de déphasage : introduction	. 216			
		6.1.3	Le mode de Goldstone	. 219			
	6.2	Champ	magnétique et cooperon	. 220			

	6.3	Champ	magnétique uniforme	.224
	6.4	Probab	ilité de retour à l'origine pour un flux Aharonov-Bohm	227
		6.4.1	L'anneau	. 227
		6.4.2	Le cylindre	. 229
	6.5	Coupla	ge spin-orbite et impuretés magnétiques	. 231
		6.5.1	Potentiel d'interaction	. 232
		6.5.2	Temps de collision	. 233
		6.5.3	Facteur de structure	. 235
		6.5.4	Le diffuson	. 240
		6.5.5	Le cooperon	. 241
		6.5.6	La probabilité de diffusion	. 243
		6.5.7	Le cooperon X_c	. 245
		6.5.8	Conclusion	. 246
	6.6	Polaris	ation des ondes électromagnétiques	. 247
		6.6.1	Libre parcours moyen	. 249
		6.6.2	Facteur de structure	. 249
		6.6.3	Intensité classique	. 252
		6.6.4	Rétrodiffusion cohérente	. 254
	6.7	Déphas	sage associé au mouvement des diffuseurs	. 254
		6.7.1	Expression du déphasage	. 255
		6.7.2	Déphasage associé à un mouvement brownien	
			des diffuseurs	. 258
	6.8	Déphas	sage ou décohérence?	. 260
	Com	nplément	ts du chapitre 6	
	C6.1	Effet A	haronov-Bohm dans un plan infini	. 262
	C6.2	2 Représ	entation fonctionnelle de l'équation de diffusion	. 265
	00.1	C6.2.1	Représentation fonctionnelle	. 265
		C6.2.2	Lois contraintes pour le mouvement brownien	
			et champ magnétique	. 266
	C6.3	B Le coor	peron dans un champ dépendant du temps	. 270
	C6.4	4 Coupla	ge spin-orbite et impuretés magnétiques :	
		un poir	nt de vue heuristique	. 275
		C6.4.1	Couplage spin-orbite	. 275
		C6.4.2	Impuretés magnétiques	. 278
	C6.5	5 Collisio	ons photons-atomes froids	. 281
		C6.5.1	Potentiel d'interaction	. 281
		C6.5.2	Diffuson et cooperon	. 282
-	m		dia standarda	250
1	1ra	Interde	electronique	209
	1.1		uution incohérente à le conductivité	. 209 - 209
	(.2	Contril	L'amprovimation de Drude Baltamann	. 292
		1.2.1	L'approximation de Drude-Doltzmann	. 292 905
		1.2.2	Le regime de confisions multiples : le diffusion	. 290
		1.2.3	remps de transport et renormalisation de vertex	. 291

	7.3	Contrib	ution du cooperon	8
	7.4	Le régin	ne de localisation faible	0
		7.4.1	Rôle de la dimensionalité	1
		7.4.2	Conducteurs de taille finie	4
		7.4.3	Dépendance en température	5
	7.5	Correct	ion de localisation faible en champ magnétique 30	6
		7.5.1	Magnétorésistance négative	6
		7.5.2	Couplage spin-orbite et impuretés magnétiques 31	0
	7.6	Magnét	orésistance associée à un flux Aharonov-Bohm 31	2
		7.6.1	Anneau	2
		7.6.2	Long cylindre : l'effet Sharvin-Sharvin	4
		7.6.3	Remarque sur les expériences de Webb	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	et de Sharvin-Sharvin : $\phi_0 vs. \phi_0/2 \dots \dots \dots \dots \dots 31$	5
		7.6.4	L'effet Aharonov-Bohm dans un plan infini $\ldots \ldots 31$.6
		1.0.1		0
	Com	plément	s du chapitre 7	
	C7.1	Formul	es de Kubo	.8
		C7.1.1	Conductivité et dissipation	8
		C7.1.2	Fonction de réponse densité-densité	3
	C7.2	Conduc	\dot{t} tance et transmission $\dots \dots \dots$	5
		C7.2.1	Introduction - Formule de Landauer	:5
		C7.2.2	De Kubo à Landauer	28
		C7.2.3	Transmission et conductance moyennes	0
		C7.2.4	Conditions aux limites et adaptation d'impédance 33	3
		C7.2.5	Correction de localisation faible dans le formalisme	
			de Landauer	5
		C7.2.6	Formalisme de Landauer pour les ondes	6
	C7.3	Conduc	tivité dans l'espace réel	8
	C7.4	Correct	tion de localisation faible et collisions anisotropes \ldots 34	0
8	Rét	rodiffus	sion cohérente de la lumière 34	3
	8.1	Introdu	$action \ldots 34$	13
	8.2	La géor	nétrie de l'albédo	4
		8.2.1	Définition	4
		8.2.2	Albédo d'un milieu diffusant	15
	8.3	Valeur	moyenne de l'albédo	17
		8.3.1	Albédo incohérent : contribution du diffuson	17
		8.3.2	Albédo cohérent : contribution du cooperon 35	50
	8.4	Dépend	lance temporelle de l'albédo et analyse de la singularité	
	0.1	triangu	laire \ldots \ldots \ldots \ldots 35	5 4
	8.5	Effet de	l'absorption	56
	8.6	Cas des	s collisions anisotropes	58
	8.7	Rôle de	a polarisation	30
	0.1	871	Coefficients de dépolarisation 36	30
		879	Albédo cohérent d'une onde polarisée	32
		0.1.4	mode concrete a and onder polarisee	

	8.8	Étude	expérimentale	; 3
		8.8.1	Singularité triangulaire	34
		8.8.2	Réduction de la hauteur du cône	6
		8.8.3	Effet de l'absorption	57
	8.9	La rétr	odiffusion cohérente dans d'autres situations	$^{\prime}1$
		8.9.1	Rétrodiffusion cohérente et « gloire »	71
		8.9.2	Rétrodiffusion cohérente et effet d'opposition	
			en astrophysique	'3
		8.9.3	Rétrodiffusion cohérente par un gaz d'atomes froids 37	'5
		8.9.4	Rétrodiffusion cohérente en acoustique	77
9	Spee	ctrosco	pie des ondes diffusées 37	'9
	9.1	Introdu	1ction	<i>'</i> 9
	9.2	Corréla	ations dynamiques de l'intensité	31
	9.3	Diffusio	on simple : QELS $\ldots \ldots 38$	33
	9.4	Diffusio	on multiple : spectroscopie des ondes diffusées \ldots \ldots 38	33
	9.5	Effet d	e la géométrie sur la fonction de corrélation dynamique 38	34
		9.5.1	Réflexion par un milieu semi-infini	35
		9.5.2	Comparaison de $G_1^r(T)$ et de $\alpha_c(\theta)$	36
		9.5.3	Réflexion par une tranche de largeur finie	39
		9.5.4	Transmission	<i>)</i> 1
	Com	plément	du chapitre 9	
	C9.1	Mouve	ment collectif des diffuseurs)3
10	Pro	priétés	spectrales des métaux désordonnés 39)7
	10.1	Introdu	action) 7
		10.1.1	Répulsion de niveaux et intégrabilité) 8
		10.1.2	Spectre d'un métal désordonné)1
	10.2	Caract	érisation des corrélations spectrales 40)2
	10.3	Séquen	ce poissonnienne)4
	10.4	Théori	e des matrices aléatoires)5
		10.4.1	Répulsion de niveaux et matrices 2×2)5
		10.4.2	Distribution des valeurs propres de matrices $N \times N$ 40)8
		10.4.3	Propriétés spectrales des matrices aléatoires 41	10
	10.5	Corréla	ations spectrales en régime diffusif 41	14
		10.5.1	Fonction de corrélation à deux points	15
		10.5.2	La limite ergodique	19
		10.5.3	La limite de diffusion libre	20
	Com	plément	t du chapitre 10	
	C10.	1 La tr	ansition GOE-GUE	23

xii

11	Fluc	tuation	ns universelles de conductance	425
	11.1	Introdu	lection	425
	11.2	Fluctua	ations de conductivité	428
		11.2.1	Fluctuations reliées à la densité d'états	431
		11.2.2	Fluctuations reliées au coefficient de diffusion	434
	11.3	Fluctua	ations universelles de conductance	435
	11.4	Effet d	un paramètre extérieur	438
		11.4.1	Dépendance en énergie	439
		11.4.2	Dépendance en température	439
		11.4.3	Cohérence de phase et régime mésoscopique	441
		11.4.4	Dépendance en champ magnétique	444
		11.4.5	Couplage spin-orbite et impuretés magnétiques	448
	Com	plément	s du chapitre 11	
	C11.	1 Fluct	uations universelles de conductance	
		et col	lisions anisotropes	451
	C11.	2 Fluct	uations de conductance dans le formalisme	
		de La	ndauer	454
12	Cor	rélation	n des figures de speckle	457
	12.1	Qu'est-	ce qu'une figure de speckle?	457
	12.2	Comme	ent analyser une figure de speckle?	458
	12.3	Coeffic	ient de transmission moyen $\ldots \ldots \ldots \ldots \ldots \ldots$	463
	12.4	Corréla	tions angulaires en transmission	465
		12.4.1	Corrélation $C^{(1)}$ à courte portée	465
		12.4.2	Corrélation $C^{(2)}$ à longue portée	469
		12.4.3	Corrélation $C^{(3)}$ associée à deux croisements	. – .
			de diffusons	. 472
		12.4.4	Lien avec les fluctuations universelles de conductance	475
	12.5	Corréla	ation temporelle des figures de speckle	470
		12.5.1	Correlations temporelles $C^{(1)}(t)$ et $C^{(2)}(t)$. 477
	10.0	12.5.2	Correlation temporelle $C^{(0)}(t)$. 480
	12.6	Correla	ation spectrale des figures de speckle	. 482
	12.7	Distrib	ution des coefficients de transmission	. 484
		12.7.1	Loi de Rayleigh	. 484
		12.7.2	Distribution gaussienne du coefficient	405
		10 - 0	de transmission I_a	. 480
		12.7.3	Distribution gaussienne de la conductance	. 487
	Com	plément	s du chapitre 12	
	C12.	1 Corré	elation spatiale de l'intensité	. 489
		C12.1	.1 Corrélations à courte portée	. 490
		C12.1	1.2 Corrélations à longue portée	. 492

13 Int	eraction	as et diffusion	497	
13.	l Introdu	lction	497	
13.	2 Potenti	Potentiel de Coulomb écranté		
13.	3 Approx	kimation de Hartree-Fock	501	
13.4	4 Correct	tion à la densité d'états	502	
	13.4.1	Interaction statique	502	
	13.4.2	Conductance tunnel et anomalie de densité d'états	507	
	13.4.3	Interaction dynamiquement écrantée	510	
	13.4.4	Effets capacitifs	514	
13.	5 Correct	tion à la conductivité	516	
13.0	5 Temps	de vie d'un état électronique	519	
	13.6.1	Introduction : théorie de Landau et désordre	519	
	13.6.2	Temps de vie à température nulle	520	
	13.6.3	Temps de vie à température finie	527	
	13.6.4	Temps de vie d'une quasi-particule au niveau de Fermi	528	
$13.^{\circ}$	7 Cohére	ence de phase	531	
	13.7.1	Introduction	531	
	13.7.2	Cohérence de phase dans un champ électrique		
		fluctuant	532	
	13.7.3	Temps de cohérence de phase en dimension $d = 1$	535	
	13.7.4	Cohérence de phase et relaxation des quasi-particules	539	
	13.7.5	Temps de cohérence de phase en dimensions $d = 2$		
		et $d = 3 \dots \dots$	541	
	13.7.6	Mesures du temps de cohérence de phase $ au_{\phi}^{ee}$	542	
Cor	nplément	ts du chapitre 13		
CI	- 0 1 Dotor	atiel coulombien éconoté en géométrie confinée	545	
	2.1 Foter	a de vie en l'absence de déserdre	549	
UI	5.2 remp		040	
14 Ma	gnétisn	ne orbital et courants permanents	551	
14.	1 Introdu	uction	551	
14.	2 Gaz d'	électrons libres dans un champ uniforme	553	
	14.2.1	Rappel : le cas sans désordre	553	
	14.2.2	Aimantation moyenne	556	
	14.2.3	Fluctuations de l'aimantation	557	
14.	3 Effet d	les interactions	560	
	14.3.1	Approximation de Hartree-Fock	560	
	14.3.2	Renormalisation de Cooper	562	
	14.3.3	Température finie	563	
14.	4 Courar	nt permanent dans un anneau	564	
	14.4.1	Anneau unidimensionnel sans désordre :		
		périodicité et effet de parité	564	
	14.4.2	Courant moyen	569	

xiv

14.5 Diffusion et courant permanent	1
14.5.1 Courant typique d'un anneau désordonné 572	2
14.5.2 Effet des interactions sur le courant moyen	5
14.5.3 Courant permanent et couplage spin-orbite	7
14.5.4 Bref panorama expérimental	9
Complément du chapitre 14	
C14.1 Courant moyen dans l'ensemble canonique $\ldots \ldots \ldots \ldots 58$	1
15 Formulaire 583	3
15.1 Densité d'états et conductance	3
15.2 Transformées de Fourier - Définitions	4
15.3 Probabilité $P(\mathbf{r}, \mathbf{r}', \omega)$	4
15.4 Divers	6
15.5 Formules de Poisson	2
15.6 Dépendances en température	3
Bibliographie 59	5
Index 61	9

Sujets développés. Les lignes représentent les liens logiques entre les chapitres.

Chapitre 1

Introduction : physique mésoscopique

1.1 Interférence et désordre

La propagation des ondes en milieu aléatoire est un phénomène commun à de nombreux domaines de la physique. Son étude a connu récemment un regain d'intérêt après la découverte, en optique et en mécanique quantique, d'effets cohérents inattendus dans un régime où l'on pensait que le désordre soit suffisamment fort pour éliminer *a priori* tout effet d'interférence.

Afin de comprendre l'origine de ces effets cohérents, il peut être utile de rappeler quelques généralités sur les interférences. Bien que très spectaculaires en mécanique quantique, leur traduction dans le langage de l'optique physique permet d'en avoir une intuition plus directe. Commençons donc par une discussion des effets d'interférence en optique.

Considérons la propagation d'une onde monochromatique dans le vide et sa diffraction par un obstacle géométrique, par exemple une ouverture circulaire. La figure de diffraction 1.1 fait apparaître, sur un écran placé à l'infini, une succession de cercles alternativement brillants et sombres qui résulte de l'interférence constructive ou destructive des ondes provenant de l'obstacle. D'après le principe de Huygens, il est possible de décrire l'éclairement en un point de l'écran en remplaçant l'ouverture par un ensemble de sources ponctuelles cohérentes et en étudiant la différence de longueur des chemins optiques associés à ces différentes sources. On peut alors associer à chaque anneau d'interférence un nombre entier (l'équivalent d'un nombre quantique en mécanique quantique).

Se pose alors la question de la stabilité de cette figure de diffraction. Si on éclaire l'obstacle par une source de lumière incohérente, pour laquelle la longueur des trains d'onde émis est suffisamment courte, de manière à déphaser entre elles les différentes sources virtuelles, alors la figure d'interférence disparaît et l'écran est éclairé uniformément. Par ailleurs, si on utilise une source

FIG. 1.1 – Figure de diffraction à l'infini par une ouverture circulaire.

de lumière cohérente et si on déplace dans son plan, de façon aléatoire et suffisamment rapide, l'obstacle diffractant, on constate que les franges d'interférence disparaissent à nouveau pour ne laisser qu'un éclairage uniforme sur l'écran. Dans ce cas, c'est la persistance rétinienne qui permet à l'œil de percevoir l'éclairement moyen de plusieurs figures d'interférences décalées. Cet exemple met en évidence deux situations possibles qui conduisent à une disparition de la figure d'interférence. Dans le premier cas, elle est associée à une distribution aléatoire de la longueur des trains d'onde émis par la source. Dans le second cas, elle résulte d'une *moyenne* d'ensemble sur la répartition spatiale des sources virtuelles. On conçoit donc sur cet exemple que des effets de cohérence de phase peuvent disparaître en moyenne.

Étudions maintenant la diffraction d'une source cohérente par un obstacle de forme aléatoire. Supposons par exemple que l'ouverture circulaire soit constituée d'un milieu diélectrique transparent dont l'indice fluctue spatialement sur des échelles comparables à la longueur d'onde. Il en résulte, pour l'intensité diffractée à l'infini, une figure constituée d'une répartition aléatoire de zones sombres et brillantes du type de celle représentée sur la figure 1.2, et appelées « tavelures » (ou speckle en anglais ¹). Ces tavelures associées à la diffraction par un objet aléatoire en représentent une « empreinte digitale » qui lui est spécifique. Mais, contrairement au cas de la diffraction par une ouverture circulaire ou par un objet suffisamment symétrique, il devient impossible d'identifier un « ordre » dans la figure d'interférence et donc de la décrire au moyen d'une suite déterminée de nombres d'onde. C'est cette impossibilité qui constitue une des caractéristiques des milieux dits « complexes ».

¹Ces tavelures ressemblent à celles observées sur la lumière émise par un laser faiblement cohérent, mais elles sont de nature différente. Il s'agit ici de fluctuations spatiales statiques dues à l'inhomogénéité du milieu diffusant.

FIG. 1.2 – Figures de tavelures (speckle) dues à la diffusion à travers un milieu inhomogène. Ici le milieu est optiquement épais, c'est-à-dire que le rayonnement incident subit plusieurs collisions avant de sortir de l'échantillon. Chaque image correspond à une réalisation différente du milieu aléatoire (M. Kaveh et al., Nature **326**, 778 (1987)).

Dans cette dernière expérience, l'onde provenant de la source n'interagit qu'une seule fois avec le milieu aléatoire avant de se projeter sur l'écran à l'infini (fig. 1.3.*a*). C'est le régime dit de *diffusion simple*. Considérons maintenant l'autre limite des milieux optiquement épais (appelés aussi milieux turbides), pour laquelle l'onde subit un grand nombre de collisions avec le milieu aléatoire avant d'en sortir (fig. 1.3.*b*). On parle alors de *diffusion multiple*. L'intensité émergente en un point de l'écran est obtenue à partir de la somme des amplitudes complexes des ondes arrivant en ce point. La phase associée à chaque amplitude est proportionnelle à la longueur du chemin de diffusion multiple correspondant divisée par la longueur d'onde λ . Les longueurs de chemin sont distribuées aléatoirement et on peut donc penser *a priori* que les phases associées fluctuent et se moyennent à zéro. L'intensité totale se réduit alors à la somme des intensités associées à chacun des chemins.

On peut se représenter cette situation comme étant équivalente à une série d'obstacles du type de ceux discutés dans le cas de la diffusion simple, de telle façon que chaque élément de cette série corresponde à une réalisation différente et indépendante de la distribution du milieu aléatoire. On pourrait donc totale de diffusion $P(\mathbf{r}, \omega = 0)$ à d = 3, 184 totale de diffusion quantique, 129 Pseudo-potentiel, 60

Q

QELS (diffusion quasi-élastique), 383 Quantum de conductance e^2/h , 15 de conductance e^2/h , 294 de conductance e^2/h , 20 de flux $\phi_0 = h/e$, 6 de flux $\phi_0 = h/e$, 225, 313 Quasi-cristal, 105 Quasiparticule, 519 Potentiel coulombien écranté, 545 temps de vie d'une, 520, 521, 548 Quaternions, 410

R

Raman (diffusion), 75 Rayleigh diffusion, 42, 71, 247, 360 loi de, 484, 485 loi de (pour le coefficient de transmission), 24, 462, 484 loi de (pour l'intensité), 381, 491 Rayleigh-Gans (diffusion de), 67, 254, 360 Réciprocité, 61, 113, 220, 279 impuretés magnétiques, 233 polarisation, 248 spin-orbite, 233 Réflexion (coefficient de), 344 Réflexion (coefficient de), 194, 334, 469 Règle de somme f, 320 Renormalisation de vertex, 297, 340, 428 Réponse impulsionnelle, 83 Répulsion (des niveaux d'énergie), 16, 398, 405, 406 Réseaux diffusifs, 208 Résolvante, 55 Rétrodiffusion cohérente, 10, 14, 344, 351diffusion Rayleigh, 254, 362 Rigidité spectrale, 30, 411, 412, 421, 427

\mathbf{S}

Sagnac (effet), 6 Schwartzshild, 13 Section efficace, 80 de diffusion résonnante, 77 de transport, 53, 151 différentielle, 52, 58, 345 différentielle de diffusion Rayleigh, 66, 72différentielle de diffusion Rayleigh (résonnante), 75 différentielle pour le modèle d'Edwards, 57, 146 d'une barrière sphérique, 58 totale, 53, 54 totale (résonnante), 76 Self-énergie, 91, 502 Self-énergie diffusion Rayleigh, 249 Self-énergie spin-orbite et impuretés magnétiques, 234 Semi-groupe (loi de pour l'équation de diffusion), 166 Semiconducteurs, 41, 580 Sharvin-Sharvin (effet), 10, 27, 314, 315Siegert (loi de), 382 σ -non linéaire (modèle), 401 Singularité triangulaire de l'albédo, 352, 364 Singulet (état), 242, 277, 279, 578 Sismiques (ondes), 41 Son (équation du), 40 Speckle, 2, 10, 26, 28, 346, 457, 458, 467, 469, 476 Spectre des novaux lourds, 398 Spectroscopie des ondes diffusées, 28, 29, 383, 476 Spin (dégénérescence), 290 Spin-orbite, 92, 231, 275, 295, 300, 306, 310, 448, 577 Spitzer (loi de) pour les enroulements. 266Sunada (théorème de), 205 Supersymétrie, 401 Susceptibilité magnétique, 552

Index

\mathbf{T}

Tavelures, 2 Temps brownien des diffuseurs τ_b , 255, 258brownien des diffuseurs τ_b , 383, 387 de cohérence de phase, 260, 301, 498, 531, 535, 538, 541, 542, 544de cohérence de phase (dépendance en température), 305 de collision élastique (Helmholtz), 255de collision élastique (modèle d'Anderson), 81 de collision élastique moven (Schrödinger), 146 de collision élastique (Schrödinger), 92 de collision spin-orbite τ_{so} , 92, 234, 276, 310 de diffusion atomique résonnante, 287de diffusion magnétique τ_B , 225, 307 de récurrence τ_R , 166, 167, 301 de récurrence τ_R (anneau), 313 de récurrence τ_R (anneau), 177 de récurrence τ_R (diffusion libre), 170de récurrence τ_R (fil connecté), 178 de récurrence τ_R (fil isolé), 180 de relaxation de l'énergie, 528 de retournement de spin τ_m , 311, 578de retournement de spin τ_m , 92, 234, 278 de transport, 80, 146, 151, 297, 340 de vie d'un état, 79, 92 de vie électronique, 32, 502, 519 de vie électronique dans le régime diffusif, 524, 526, 527 de vol de la lumière, 255 Tenseur de polarisabilité statique, 71 Théorème optique, 53, 54, 56

Thermodynamique (grand potentiel), 552, 555 Thomas-Fermi approximation de, 499, 507, 548 vecteur d'onde de (κ), 499, 507 Thouless énergie de, 19, 163, 172 temps de, 19, 172, 174 Trajectoires conjuguées, 117 conjuguées (impuretés magnétiques), 279 conjuguées (polarisation des ondes), 247 conjuguées (spin-orbite), 276 de diffusion multiple, 12, 108, 346, 428Transfert radiatif, 122, 343 équation de, 186, 188, 358 Transition GOE-GUE, 423 Transmission coefficient de, 23, 194, 326, 336, 458coefficient de (distribution), 484 coefficient de (fluctuations), 454 coefficient de (moyen), 327, 331, 333, 463 coefficient de (moyen) en dimension d, 332 fonction de corrélation angulaire du, 459, 465, 476 matrice de, 329 Triplet (état), 242, 277, 279, 578

V

Variance de la conductance électrique, 425, 428 Variance $\Sigma^2(E)$, 403, 404, 412, 415, 525 dans la limite diffusive, 420 dans la limite ergodique, 419 Variance $\Sigma^2(E)$, 427 Variance $\Sigma^2(E)$, 30 Vertex élémentaire spin-orbite et impuretés magnétiques, 237