
SUPRACONDUCTIVITÉ

INTRODUCTION

Philippe MANGIN - Rémi KAHN

SUPRACONDUCTIVITÉ INTRODUCTION

Grenoble Sciences

Grenoble Sciences est un centre de conseil, expertise et labellisation de l'enseignement supérieur français. Il expertise les projets scientifiques des auteurs dans une démarche à plusieurs niveaux (référés anonymes, comité de lecture interactif) qui permet la labellisation des meilleurs projets après leur optimisation. Les ouvrages labellisés dans une collection de Grenoble Sciences ou portant la mention « Sélectionné par Grenoble Sciences » (« Selected by Grenoble Sciences ») correspondent à :

- des projets clairement définis sans contrainte de mode ou de programme,
- ▶ des qualités scientifiques et pédagogiques certifiées par le mode de sélection (les membres du comité de lecture interactif sont cités au début de l'ouvrage),
- une qualité de réalisation assurée par le centre technique de Grenoble Sciences.

Directeur scientifique de Grenoble Sciences Jean BORNAREL, professeur à l'Université Joseph Fourier, Grenoble I

On peut mieux connaître Grenoble Sciences en visitant le site web : http://grenoble-sciences.ujf-grenoble.fr

On peut également contacter directement Grenoble Sciences : Tél. : (33)4 76 51 46 95, e-mail : grenoble.sciences@ujf-grenoble.fr

Livres et pap-ebooks

Grenoble Sciences labellise des livres papier (en langue française et en langue anglaise) mais également des ouvrages utilisant d'autres supports. Dans ce contexte, situons le concept de **pap-ebooks** qui se compose de deux éléments :

- un livre papier qui demeure l'objet central avec toutes les qualités que l'on connaît au livre papier
- un site web corrélé ou site web compagnon qui propose :
 - des éléments permettant de combler les lacunes du lecteur qui ne possèderait pas les prérequis nécessaires à une utilisation optimale de l'ouvrage
 - des exercices de training
 - des compléments permettant d'approfondir, de trouver des liens sur internet, etc.

Le livre du pap-ebook est autosuffisant et nombreux sont les lecteurs qui n'utiliseront pas le site web compagnon. D'autres pourront l'utiliser et ce, chacun à sa manière. Un livre qui fait partie d'un pap-ebook porte en première de couverture un logo caractéristique et le lecteur trouvera le site compagnon à l'adresse internet suivante :

http://grenoble-sciences.ujf-grenoble.fr/pap-ebooks

Grenoble Sciences reçoit le soutien du ministère de l'Enseignement supérieur et de la Recherche et de la Région Rhône-Alpes.
Grenoble Sciences est rattaché à l'Université Joseph Fourier de Grenoble.

ISBN 978-2-7598-0657-7 © EDP Sciences, 2013

SUPRACONDUCTIVITÉ INTRODUCTION

Philippe Mangin - Rémi Kahn

17, avenue du Hoggar Parc d'Activité de Courtabœuf - BP 112 91944 Les Ulis Cedex A - France

Supraconductivité. Introduction

Cet ouvrage, labellisé par Grenoble Sciences, est un des titres du secteur Sciences de la matière de la Collection Grenoble Sciences (EDP Sciences), qui regroupe des projets originaux et de qualité. Cette collection est dirigée par Jean BORNAREL, professeur à l'université Joseph FOURIER, Grenoble 1.

Comité de lecture de l'ouvrage :

- ▶ Jean Pascal BRISON, chercheur au CEA, service de physique statistique, magnétisme, supraconductivité CEA Grenoble
- ▶ Hervé Courtois, professeur à l'université Joseph Fourier, Grenoble 1
- ▶ Thierry Klein, professeur à l'université Joseph Fourier, Grenoble 1
- ▶ Jérome LESUEUR, professeur à l'école supérieure de physique et de chimie industrielles, Paris Tech
- ▶ Stéphane PAILHÈS, chargé de recherche au CNRS, laboratoire de physique de la matière condensée et nanostructures, Lyon
- ▶ José TEIXEIRA, directeur de recherche au CNRS, laboratoire Léon BRILLOUIN, CEA Saclay
- ▶ Pierre VEDRINE, ingénieur au CEA, institut de recherche sur les lois fondamentales de l'univers, Saclay
- ▶ Georges WAYSAND, directeur de recherche au CNRS, laboratoire souterrain à bas bruit, Rustrel

Cet ouvrage a été suivi par Laura CAPOLO pour la partie scientifique et par Sylvie BORDAGE et Anne-Laure PASSAVANT du centre technique Grenoble Sciences pour sa réalisation pratique. L'illustration de couverture est l'œuvre d'Alice GIRAUD, d'après : image du réseaux de vortex obtenue en spectroscopie tunnel à balayage dans l'équipe de D. RODITCHEV à l'institut des nanosciences de Paris - UMR 75-88 au CNRS, Université Pierre et Marie CURIE, Paris 6; aimant en lévitation au-dessus d'un supraconducteur, J. BOBROFF, J. QUILLIAM, F. BOUQUET, LPS, Orsay.

Autres ouvrages labellisés sur des thèmes proches (chez le même éditeur)

Magnétisme : I Fondements, II Matériaux (Sous la direction d'E. du Trémolet de Lacheisserie) • Physique des diélectriques (D. Gignoux & J.C. Peuzin) • La Mécanique Quantique. Problèmes résolus, Tome I et II (V.M. Galitski, B.M. Karnakov & V.I. Kogan) • Introduction à la mécanique statistique (E. Belorizky & W. Gorecki) • Mécanique Statistique. Exercices et problèmes corrigés (E. Belorizky & W. Gorecki) • Mécanique - De la formulation lagrangienne au chaos hamiltonien (C. Gignoux & B. Silvestre-Brac) • Problèmes corrigés de mécanique et résumés de cours. De Lagrange à Hamilton (C. Gignoux & B. Silvestre-Brac) • Naissance de la Physique (M. Soutif) • L'Asie, source de sciences et de techniques (M. Soutif) • Description de la symétrie. Des groupes de symétrie aux structures fractales (J. Sivardière) • Symétrie et propriétés physiques. Des principes de Curie aux brisures de symétrie (J. Sivardière) • La Turbulence (M. Lesieur) • Turbulence et déterminisme (M. Lesieur en collaboration avec l'institut universitaire de France) • Physique des plasmas collisionnels. Applications aux décharges hautes fréquences (M. Moisan & J. Pelletier) • Spectroscopie de résonance paramagnétique électronique, fondements (P. Bertrand) • Spectroscopies infrarouge et Raman (R. Poilblanc & F. Crasnier) • Les milieux aérosols et leurs représentations (A. Mailliat)

et d'autres titres sur le site internet :

http://grenoble-sciences.ujf-grenoble.fr

AVANT-PROPOS

Ce livre a été écrit dans le prolongement de cours donnés aux niveaux Master et Ingénieur. Face au manque d'ouvrages de niveau élémentaire, particulièrement en français, il se veut être une introduction de la supraconductivité, accessible aux étudiants de master, de licence et des grandes écoles scientifiques. Nous avons voulu en faire un ouvrage d'enseignement où les approches simples ont été privilégiées, les hypothèses clairement émises et les calculs suffisamment détaillés. Nombre de développements d'électromagnétisme, de thermodynamique ou de physique quantique peuvent d'ailleurs constituer de magnifiques problèmes de premier cycle des universités ou des classes préparatoires.

Face aux connaissances actuelles, ce volume ne constitue néanmoins qu'une introduction. D'autres ouvrages en projet *Matériaux et applications* et *Supraconductivité conventionnelle et non-conventionnelle* devraient apporter une vision plus large et plus spécialisée de la supraconductivité d'aujourd'hui.

Le contenu de cet ouvrage a bénéficié des conseils avisés de nombre de nos collègues de l'Institut Jean LAMOUR de Nancy (IJL), du laboratoire Léon BRILLOUIN de Saclay (LLB) et du CEA. Les membres du comité de lecture, Jean-Pascal BRISON, Hervé COURTOIS, Thierry KLEIN, Jérôme LESUEUR, Stephane PAILHÈS, Pierre VEDRINE et Georges WAYSAND, ont apporté une expertise décisive dans l'écriture de plusieurs chapitres. En grand pédagogue, José TEIXEIRA a procédé à une relecture détaillée de l'ouvrage et considérablement enrichi la présentation de plusieurs passages délicats.

H. COURTOIS, P. DUBOS, C. GOURDON, V. JEUDY, T. KLEIN, B. PANNETIER, A. PAUTRAT, D. RODITCHEV et J.C. VILLEGIER nous ont prodigué de précieux conseils et transmis avec beaucoup de gentillesse des illustrations de leurs travaux originaux

L'équipe Grenoble Science dirigée par Jean BORNAREL nous a encouragés, stimulés, et a créé un environnement propice à l'élaboration d'un ouvrage de qualité. Mesdames Laura CAPOLO, Sylvie BORDAGE et Anne-Laure PASSAVANT ont effectué, avec beaucoup de bonne humeur et de patience, un travail remarquable de graphisme, de mise en pages et de clarification de mille détails tellement importants pour le lecteur débutant. Que tous soient ici remerciés.

Enfin, nous réservons une mention spéciale aux étudiants qui ont suivi l'enseignement dont est issu ce livre. Leur enthousiasme, les multiples questions qu'ils ont posées et les commentaires qu'ils ont apportés ont constitué la motivation première pour réaliser cet ouvrage.

Philippe MANGIN Rémi KAHN

TABLE DES MATIÈRES

Chapitre 1 - Introduction	1
1.1 - Une histoire, des hommes	1
1.2 - Manifestations expérimentales de la supraconductivité	2
1.2.1 - Découverte de la supraconductivité : température critique	2
1.2.2 - Comportement magnétique des supraconducteurs	3
Effet Meissner-Ochsenfeld	3
Champs critiques et supraconducteurs de type I et II	3
1.2.3 - Densité de courant critique	4
1.2.4 - Effet isotopique	4
	5
1.3 - Les modèles phénoménologiques	6
1.3.2 - Approche thermodynamique	7
1.3.3 - Théorie de Ginzburg-Landau	7
1.3.4 - Les vortex	8
1.4 - La théorie microscopique BCS	8
1.5 - Les effets tunnel	9
1.6 - Une grande diversité de matériaux supraconducteurs	10
1.7 - Des supraconducteurs non « conventionnels »	11
1.8 - Des applications spectaculaires	12
1.9 - La supraconductivité dans l'histoire des hommes	13
Chapitre 2 - Théorie de LONDON	15
2.1 - Les équations de MAXWELL.	15
2.2 - Comportement attendu d'un conducteur parfait	16
2.2.1 - Conduction électrique dans un conducteur normal	16
2.2.2 - Conduction électrique dans un conducteur parfait	17
2.2.3 - Champ magnétique dans un conducteur parfait	18
Application à une plaque de conducteur parfait	19
2.3 - Supraconducteur <i>versus</i> conducteur parfait	22
2.3.1 - Refroidissement en champ nul suivi de l'application d'un champ	22
2.3.2 - Application du champ magnétique lorsque T > T _c puis refroidissement sous champ	23
2.4 - Les équations de LONDON	
2.4.1 - Les électrons supraconducteurs	25

	2.4.2 - Première équation de LONDON	25
	2.4.3 - Seconde équation de LONDON	
	2.4.4 - Plaque supraconductrice plongée dans un champ magnétique	26
	Plaque épaisse $(d \gg \lambda_L)$	26
	Plaque mince $(d \le \lambda_L)$	27
2.5 -	Longueur de London	28
	2.5.1 - Détermination expérimentale de λ_L	28
	2.5.2 - Dépendance thermique de la longueur de LONDON	29
2.6 -	Application au fil supraconducteur	30
	2.6.1 - Fil soumis à un champ magnétique	30
	2.6.2 - Fil parcouru par un courant	32
	2.6.3 - Fil de petit diamètre parcouru par un courant	33
	2.6.4 - Généralisation	34
2.7 -	Expérience d'OCHSENFELD	34
2.8 -	Supraconducteur non simplement connexe (avec trou)	36
	2.8.1 - Séquence 1 : refroidissement en champ nul	36
	2.8.2 - Séquence 2 : refroidissement sous champ	37
	2.8.3 - Conclusion	37
2.9 -	Point de vue énergétique	38
	2.9.1 - Interprétation énergétique de la longueur de LONDON	38
	Energie magnétique	38
	Energie cinétique des électrons supraconducteurs.	38
	2.9.2 - Seconde équation de LONDON par méthode variationnelle	39
2.10	- Approche de la supraconductivité par la mécanique des fluides	41
	Trois remarques importantes	42
2.11	- Moment de LONDON	42
	2.11.1 - Approche intuitive	42
	2.11.2 - Evaluation du moment de LONDON	43
2.12	- Equation de LONDON en jauge de LONDON	46
	2.12.1 - Notion de jauge	46
	2.12.2 - Jauge de London	46 47
	2.12.4 - Impulsion p et équation de London	48
	2.12.5 - Supraconducteur non simplement connexe	48
Com	plément 2A - Dérivation totale et partielle par rapport au temps	49
		7)
Com	plément 2B - Propriété d'une fonction harmonique dont la composante du gradient sur la normale à la surface est nulle	50
C		
com	plément 2C - Fonctions de Bessel modifiéesAu voisinage de l'origine $(x \rightarrow 0)$	51 51
	Comportements asymptotiques à l'infini $(x \to \infty)$	51
	pitre 3 - Equations non-locales de PIPPARD	53
3.1 -	Origine des équations non-locales	53
32-	Caractère non-local dans les supraconducteurs purs	54

TABLE DES MATIÈRES IX

3.3 - Longueur de pénétration du champ magnétique	55
3.4 - Analyse de FOURIER des équations de PIPPARD	56
3.5 - Supraconducteurs «sales»	60
Chapitre 4 - Thermodynamique des supraconducteurs de type I	63
4.1 - Description thermodynamique	64
4.2 - Les variables thermodynamiques de la supraconductivité	65
4.2.1 - Equivalence entre courants de LONDON et aimantation	65
Matière aimantable	65
Matière supraconductrice	65
4.2.2 - Systèmes thermodynamiques	66
Système solénoïde + matière	66
Système matière supraconductrice seule	68
4.2.3 - Interprétation de la lévitation des supraconducteurs de type I	68
4.3 - Les fonctions thermodynamiques de la supraconductivité	69
4.4 - Les données thermodynamiques	71
4.4.1 - Equations d'état	71
Phase normale	71
Phase supraconductrice	71
4.4.2 - Chaleurs spécifiques	71
Chaleur spécifique de réseau C ^{vib}	71
Chaleur spécifique électronique C _n el en phase normale	72
Chaleur spécifique électronique C _s el en phase supraconductrice	73
4.4.3 - Diagramme de phase - Ligne de champ critique	73
4.5 - Transition état supraconducteur - état normal	75
4.5.1 - Enthalpie libre de condensation	75
4.5.2 - Relation entre chaleur spécifique et pente de la ligne de transition	76
4.5.3 - Chaleurs latentes de transformation	78
4.5.4 - Ordre de la transition de phase	79
Transitions du premier ordre	80
Transitions du second ordre	80
Complément 4 - Les milieux magnétiques	81
4C.1 - Champs dans la matière aimantée	81
Equivalence aimantation - distribution de courants ampériens	81
Courants ampériens dans un cylindre uniformément aimanté	82
Champ magnétique B	82
Champ H	83
Champs B et H dans un cylindre uniformément aimanté	83
Champs B et H dans un cylindre infini placé dans un solénoïde	84
Ellipsoïde uniformément aimanté	85
Cas général	86
4C.2 - Travail d'aimantation de la matière	88
Travail de charge d'un solénoïde vide	88
Travail de charge d'un solénoïde contenant un cylindre de matière	89
Travail de la matière aimantée seule	89

Chapitre 5 - Etat intermédiaire des supraconducteurs de type I	91
5.1 - Critères d'apparition d'une transition S/N	91
5.2 - Transition S/N d'un cylindre infini	92
5.3 - Transition dans un échantillon de petite taille	93
5.3.1 - Film mince	93
5.3.2 - Fil de petit diamètre	94
5.4 - Effet de forme des échantillons	95
5.4.1 - Rappel de résultats de magnétisme	95
5.4.2 - Application aux supraconducteurs	96
Courants de LONDON comprimés sur la surface	96
Courants de London décompressés	97
5.5 - Etat intermédiaire dans une sphère	98
5.5.1 - Première approche	98 99
5.6 - Etat intermédiaire dans une plaque mince 5.6.1 - Modèle laminaire	
5.6.2 - Bilan énergétique	
Energie de création d'interfaces	
Energie due à la perturbation du champ magnétique hors de la plaque	
Energie due à la perturbation du champ magnétique dans la plaque	
5.6.3 - Structure d'état intermédiaire de la plaque	105
5.7 - Eviter les confusions	107
5.8 - Fil parcouru par un courant (modèle d'état intermédiaire)	107
5.8.1 - Position du problème	
5.8.2 - Modèle d'état intermédiaire	
5.8.3 - Fil de petit diamètre	
5.9 - Courant critique d'un fil plongé dans un champ magnétique	
5.9.1 - Cas général	
5.9.2 - Champ magnétique appliqué parallèlement à l'axe du fil	
5.9.3 - Champ magnétique appliqué perpendiculairement à l'axe du fil	113
Chapitre 6 - Supraconducteurs de type II	115
6.1 - Deux types de comportement magnétique	115
6.1.1 - Emergence des supraconducteurs de type II	
6.1.2 - Comportement magnétique des supraconducteurs de type II	
Supraconducteur de type I (appelé aussi de PIPPARD)	
Supraconducteur de type II (appelé aussi de LONDON)	
6.1.3 - Répartition des matériaux supraconducteurs	
6.2 - Enthalpie libre magnétique de surface	
6.3 - Filament normal dans un supraconducteur	
1	
6.4 - Enthalpie libre de surface (positive) par défaut de condensation	
6.4.2 - Interprétation géométrique de la longueur de cohérence	

	6.4.3 - Enthalpie libre de condensation surfacique	
6.5 -	- Vortex et supraconducteurs de type II 6.5.1 - Description d'un vortex 6.5.2 - Stabilité des vortex Condition de stabilité Dépendance en température Effet des impuretés	126 126 127 127 129 130
	6.5.3 - Quantification du flux porté par un vortex	
	- Résultats de la théorie GLAG	
6.6 -	- Réseau de vortex	132
6.7 -	- Champ critique H_{c2}	136
6.8 -	- Eléments sur la structure et la dynamique des vortex 6.8.1 - Pénétration des vortex 6.8.2 - Diagrammes de phase des vortex Cristal de vortex Verre de BRAGG Verre de vortex Liquide de vortex Diagramme de phase	138 140 140 140 140 141
6.9 -	- Transport de courant dans les supraconducteurs de type II	142 142
6.10	- Lévitation en présence de vortex	144
6.11	- Quelques illustrations de la diversité de comportement des vortex	145 146 147 148
	pitre 7 - Champs et courants dans les supraconducteurs de type II - dèles d'état critique	153
	Forces subies par les vortex	153 154 154 154 155
7.2 -	- Dissipation d'énergie par déplacement de vortex	156 157

7.2.2 - Champ électrique induit	
7.2.3 - Origine de la force de freinage - Modèle de BARDEEN-STEPHEN	. 158
7.3 - Densité de courant critique	
7.3.1 - Force d'ancrage	
7.3.2 - Densité de courant critique	
7.3.3 - Retour sur la résistivité d'écoulement de vortex	
7.3.4 - Sauts de vortex	
7.3.5 - Fluage de vortex	
7.3.6 - Autres comportements	
7.4 - Modèles d'état critique	
7.4.1 - Etat critique	
7.4.2 - Lois de comportement	
7.5 - Modèle de Bean	
7.5.1 - Champ croissant : pénétration des vortex	
7.5.2 - Champ décroissant : profil de champ et distribution des vortex	. 167
7.5.3 - Règles de profil du champ magnétique et de densité de courant	
(en géométrie plane)	
7.6 - Aimantation d'une plaquette supraconductrice de type II	
7.6.1 - Aimantation d'une plaquette	
7.6.2 - Courbe de première aimantation (modèle de BEAN)	
7.6.3 - Cycle d'hystérésis en modèle de BEAN	
7.6.4 - Cycle d'hystérésis en modèle de KIM-JI	
7.7 - Aimantation en géométrie cylindrique (modèle de BEAN)	
7.7.1 - Cylindre plein, champ magnétique appliqué suivant l'axe	
7.7.2 - Géométrie tubulaire, aimantation du vide	
7.8 - Mise en évidence expérimentale des états critiques	
7.9 - Transport de courant en phase de SCHUBNIKOV	
7.9.1 - Transport de courant en absence de champ extérieur	
7.9.2 - Transport de courant en présence d'un champ extérieur	. 184
Complément 7A - Différents aspects de la force de LORENTZ	. 186
7CA.1 - Introduction	
7CA.2 - Force de LORENTZ	
7CA.3 - Force de LONDON	
Energie d'un vortex	
Energie d'un vortex isolé	
Energie d'interaction entre vortex	
Extension à un vortex dans une densité de courant uniforme	
7CA.4 - Force de MAGNUS	
Sphère dans un fluide en translation	
Force de MAGNUS	
7CA.5 - Conclusion	
Complément 7B - Modèle de BARDEEN-STEPHEN	
7CB.1 - Articulation du l'aisonnement	
/ CD.2 Denote as contain	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

7CB.3 - Champ électrique extérieur	194
7CB.4 - Densité de charge en surface de cœur	195
7CB.5 - Champ intérieur	196
7CB.6 - Puissance dissipée et résistivité d'écoulement de vortex	196
Chapitre 8 - Paires de COOPER - Principaux résultats de la théorie BCS	199
8.1 - Gaz d'électrons libres	199
8.1.1 - Gaz d'électrons libres à 0 K	199
Densité d'états	200
Niveau de FERMI	201
Effet de la température	202
8.2 - Gaz d'électrons à deux particules	203
8.2.1 - Fonctions d'onde à deux particules indépendantes	
8.2.2 - Potentiel d'interaction	
8.2.3 - Interaction par l'intermédiaire des phonons	
8.3 - Système de référence	207
8.3.1 - Système à une particule	
Système à états dégénérés	
Généralisation à <i>N</i> états dégénérés	
Système à états non-dégénérés	
Généralisation à N états non-dégénérés	
8.3.2 - Systèmes de paires	
8.4 - Paires de COOPER	
8.4.1 - Les états de paires accessibles	
8.4.2 - Définition du zéro des énergies	
8.4.3 - Etat lié de la paire de COOPER à 0 K	
8.4.4 - Fonction d'onde, probabilité de présence	
8.4.5 - Extension de la paire de COOPER	
8.5 - Eléments de la théorie BCS	
8.5.1 - Assemblée de paires de COOPER	
8.5.2 - Etat fondamental	
8.5.3 - Quasiparticules	
8.6 - Conséquences de la structure énergétique	
8.6.1 - Température critique	
8.6.2 - Nature du gap supraconducteur	
8.6.3 - Longueur de cohérence	
8.6.4 - Champ critique - Enthalpie libre de condensation	
8.6.5 - Chaleur spécifique électronique	
8.6.6 - Densité de courant critique	
Métal normal	
Métal en phase supraconductrice	
Bilan énergétique	
8.7 - Les électrons supraconducteurs et la longueur de LONDON	
Complément 8 - Eléments de matrices du potentiel d'interaction entre particules	234

Chapitre 9 - Cohérence et quantum de flux	235
9.1 - Densité de courant et équation de LONDON	235
9.2 - Phase de la fonction d'onde	236
9. 3 - Quantification du flux	237
9.3.1 - Le fluxon	
9.3.2 - Supraconducteur simplement connexe	238
9.3.3 - Supraconducteur non-simplement connexe	239
9.3.4 - Preuve expérimentale de l'existence des paires de COOPER	239
9.4 - Retour sur les jauges	242
9.4.1 - Seconde équation de LONDON	
9.4.2 - Supraconducteur simplement connexe	
9.4.3 - Supraconducteur non-simplement connexe	
9. 5 - Quantification du flux : application aux vortex	
9.5.1 - Fluxon porté par un vortex isolé	
9.5.2 - Fluxon en réseau d'ABRIKOSOV	
9.5.3 - Vortex confiné	
9.5.4 - Densité de courant autour d'un cœur de vortex	
9.6 - Equation de LONDON généralisée en présence de vortex	
9.7 - Retour sur le moment de LONDON	247
Complément 9 - Impulsion (généralisée)	249
9C.1 - Mécanique lagrangienne et hamiltonienne	
Notations	
Lagrangien et équations de LAGRANGE	
Lagrangien d'une particule chargée	
Impulsion d'une particule chargée	
Fonction de HAMILTON	
9C.2 - Passage à la mécanique quantique	
Impulsion et vecteur d'onde	
Hamiltonien d'une particule dans un champ électromagnétique	
Densité de courant	
9C.3 - Jauge	
Chapitre 10 - Effet JOSEPHSON	253
10.1 - Equations de JOSEPHSON dans une jonction SIS	253
10.1.1 - Molécule d'hydrogène ionisée	
10.1.2 - Transfert entre blocs supraconducteurs	
10.2 - Effet Josephson continu (SIS)	256
10.2.1 - Courant JOSEPHSON	
10.2.2 - Courant maximum	257
Relation d'Ambegaokar et Baratoff (jonction SIS)	257
10.3 - Effet Josephson alternatif	258
10.3.1 - Fréquence de JOSEPHSON	258
10.3.2 - Application : représentation du volt	258

10.4 - Caractéristique « courant-tension » d'une jonction JOSEPHSON SIS	259
10.4.1 - Jonction JOSEPHSON alimentée en tension	
10.4.2 - Modèle RCSJ	261
10.4.3 - Equations du système RCJS alimenté en courant	262
10.4.4 - Analogie mécanique au modèle RCJS	262
10.4.5 - Fréquences caractéristiques	
D'oscillation du pendule libre	263
D'oscillation de la phase de jonction à ses bornes	265
10.4.6 - Réponses comparées des systèmes mécaniques et RCSJ	
« alimentés » en couple Γ ou intensité I	265
Etat initial	265
Régime JOSEPHSON	265
Seuil critique	265
Au-delà des seuils critiques	266
Retour en dessous des seuils critiques - Hystérésis	266
10.4.7 - Système suramorti	
10.4.8 - Représentations graphiques	
10.4.9 - Amortissement faible et intermédiaire	271
10.4.10 - Quelques exemples de jonction SIS	
10.5 - Energie stockée dans une jonction JOSEPHSON (SIS)	
10.6 - Jonction JOSEPHSON soumise à une onde électromagnétique	274
10.6.1 - Effets de résonance	
10.6.2 - Marches de Shapiro	275
10.7 - Jonctions SNS et SCS	277
10.7.1 - Effets de proximité, modèle d'ASLAMAZOV-LARKIN	
10.7.2 - Courant JOSEPHSON <i>via</i> les niveaux d'Andreev	
Niveaux d'Andreev	
Réflexions d'Andreev-Saint James.	
Niveau d'Andreev	
Courant Josephson	
10.7.3 - Exemple de jonctions SNS	
10.7.4 - Signature de l'effet JOSEPHSON	
10.8 - Jonctions JOSEPHSON de type π	
10.8.1 - Définition et énergie	
· · · · · · · · · · · · · · · · · · ·	
10.8.2 - Familles de jonctions JOSEPHSON π	
10.8.3 - Jonctions SFS : mécanismes de jonction π	
10.9 - Jonction JOSEPHSON : un système à grand nombre d'états	
10.9.1 - Electron sur une chaîne atomique	
10.9.2 - Généralisation	
10.9.3 - Application à l'effet JOSEPHSON	
Première équation de JOSEPHSON	
Energie stockée dans une jonction	
Seconde équation de JOSEPHSON	
10.9.4 - Propriété générale des condensats de BOSE-EINSTEIN	296

Complément 10A - Résolution des équations de couplage	297
Complément 10B - Jonction JOSEPHSON en régime suramorti	299
Equations initiales	
Tension moyenne $\langle V \rangle$ et période T	
Tension moyenne $\langle V \rangle$ en fonction du courant d'alimentation I	
Complément 10C - Jonction JOSEPHSON soumise à une tension alternative	301
Chapitre 11- Superconducting QUantum Interference Device «SQUID»	303
11.1 - Nature du courant SQUID	303
11.2 - rf-SQUID à inductance nulle	306
11.2.1 - rf-SQUID non-inductif à une jonction	306
11.2.2 - rf-SQUID non-inductif à deux jonctions	308
11.3 - rf-SQUID inductif	309
11.3.1 - Déphasage magnétique et flux du champ extérieur	
11.3.2 - Fonctionnement du rf-SQUID inductif	311
11.4 - rf-SQUID à jonction π	313
11.5 - SQUID inductif à une jonction : approche énergétique	314
11.6 - rf-SQUID à 2 jonctions JOSEPHSON de natures différentes	318
11.6.1 - rf-SQUID hétérojonction à inductance nulle	318
11.6.2 - rf-SQUID hétérojonction d'inductance significative	
11.7 - Lecture du rf-SQUID	321
11.8 - DC-SQUID (SQUID à polarisation en courant continu)	321
11.8.1 - Principe du DC-SQUID	
DC-SQUID à inductance nulle ($\beta_L = 0$)	
DC-SQUID inductif ($\beta_L \neq 0$)	
11.8.2 - DC-SQUID en régime suramorti	
11.8.3 - Lecture du DC-SQUID	
11.8.4 - DC-SQUID hétérojonction	323
Chapitre 12 - Jonctions JOSEPHSON sous champ magnétique	
12.1 - Champ magnétique dans une jonction étroite	329
12.2 - Courant dans une jonction Josephson étroite soumise à un champ magnétique \ldots	332
12.3 - Jonction 0- π étroite sous champ magnétique	337
12.4 - Cas général d'une jonction sous champ magnétique	339
12.4.1 - Longueur de JOSEPHSON	339
12.4.2 - Equations générales	
12.4.3 - Comportement en champ très faible	
12.4.4 - Cas particulier de la jonction étroite	
12.5 - Jonction JOSEPHSON large sous champ magnétique	
12.5.1 - Analogie mécanique	
12.5.2 - Mouvements remarquables du pendule	
Scénario II	
12.5.3 - Jonction large en régime MEISSNER	
5 5	-

TABLE DES MATIÈRES	XVII
12.5.4 - Jonction large en régime de vortex	
12.5.5 - Vortex de JOSEPHSON isolé	352
12.6 - Transport de courant dans une jonction JOSEPHSON large	354
12.6.1 - Jonction large parcourue par un courant	354
12.6.2 - Jonction JOSEPHSON soumise à un champ magnétique	
et parcourue par un courant	
Régime MEISSNER	
Régime vortex	
12.7 - Demi fluxon au raccordement $0-\pi$ d'une jonction JOSEPHSON hybride	358
Complément 12 - Déphasage entre les blocs supraconducteurs	
au sein d'une jontion 0- π infinie	362
12C.1 - Les équations qui gouvernent la jonction	
12C.2 - Conditions aux limites	
12C.3 - Profil du déphasage	363
Notations	365
Ouvrages bibliographiques	371
Index	373

Chapitre 1 INTRODUCTION

1.1 - Une histoire, des hommes

Depuis sa découverte en 1911, la supraconductivité est peut-être l'une des aventures les plus passionnantes de la physique. En ligne directe, on ne lui doit pas moins de cinq prix NOBEL :

Heike KAMERLINGH ONNES pour la découverte du phénomène (1913), John BARDEEN, Leon COOPER et Robert SCHRIEFFER qui en fournissent une théorie microscopique (1972), Brian JOSEPHSON et Ivar GIAEVER dont les travaux théoriques et expérimentaux mettent en évidence les effets de cohérence quantique et les effets tunnel (1973), Alex MÜLLER et Johannes Georg BEDNORZ pour la découverte des supraconducteurs à haute température critique (1987) et Alexei ABRIKOSOV et Vitaly GINZBURG pour leurs nombreux travaux sur les supraconducteurs de type II et la physique des vortex (2003).

De façon moins directe, mais y ayant apporté des contributions majeures, on trouve d'autres récipiendaires de ce prix prestigieux, tels Lev Landau (1962) et Pierre-Gilles de Gennes (1991). En outre, de nombreux physiciens et chimistes de renom y ont laissé une empreinte. Citons Walther Meissner et Robert Ochsenfeld, les frères Fritz et Heinz London, Brian Pippard, Bern Matthias, Herbert Fröhlich, Paul Chu, autant de noms qui reviendront dans ce livre. Enfin de nombreux chercheurs lui ont consacré temps et enthousiasme et continuent de le faire aujourd'hui.

Pour ce qui est de l'avenir, il est plus que probable que ceux qui expliqueront de façon convaincante les mécanismes de la supraconductivité dite à « haute température » (HTS) et/ou ceux qui découvriront de nouveaux matériaux dont la température critique s'approche ou même dépasse la température ambiante ne manqueront pas de figurer, eux aussi, sur cette liste.

statistique de FERMI-DIRAC	199
STEWART-MCCUMBER (paramètre de)	263, 324
supraconducteur	
– à base de fer (pnictide)	11
– à haute température critique (HTS)	
- anisotrope	
- doux/dur	138
– en rotation	43, 247
- non-conventionnel	11
- non-simplement connexe	
- sale	
- versus conducteur parfait	
thermodynamique des –	
supraconducteur de type I	
diagramme des phases	
état intermédiaire	91
supraconducteur de type II	115, 128
diagramme des phases	116
sustentation de –	
transport de courant	142, 154
supraconductivité de surface	117
système de référence	207
température	
- critique $T_{\rm c}$	3, 73, 222
– de Debye	72
tension de gap	259
théorie	
– BCS	
- de Ginzburg-Landau	7
- GLAG	131
- de LONDON	6, 15
thermodynamique des supraconducteurs	63, 69
transition de phase	
– du premier ordre	80
- du second ordre	80
transition supra/normal	
– dans un cylindre	92
équation de CLAPEYRON	
transport de courant (supraconducteur de type II)	142
travail d'aimantation	

TUYN (loi de)	73
types I et II (supraconducteurs)	
variables canoniques conjuguées	
phase/nombre de particules	295
position/impulsion	
vecteur d'onde de FERMI	
verre	
- de BRAGG (vortex)	140
– de vortex	
visualisation de vortex	134
vitesse	
- de Fermi	201
- critique	
électrons autour d'un cœur de vortex	
volt (représentation)	
vortex	
- de JOSEPHSON	
– de Joseffison – géant	· · · · · · · · · · · · · · · · · · ·
– geant – isolé	
ancrage des –	
champ magnétique	
cœur de –	
confinement de –	
cristal de –	
diagramme de phase	
écoulement de – (flux flow)	
énergie de formation	
fluage de – (flux creep)	
interaction entre –	188
liquide de –	141
nanostructures	148
processus de formation	138, 139
répulsion par les surfaces	
réseau d'ABRIKOSOV	
saut de – (flux jump)	
stabilité	
verre de –	
visualisation de –	
weak link (jonction SCS)	
point faible	253
Y-Ba-Cu-O	11