1. La torsion

1.1 Cisaillement de torsion

1.1.1 Cas des sections creuses

La contrainte tangente, pour des sections de forme convexe, a pour expression :

$$\iota_{Ti} = T_{Ed}/2A_k t \tag{6.26}$$

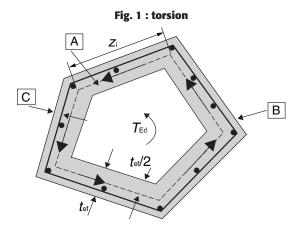
 T_{Ed} = couple de torsion,

t = épaisseur de la paroi au point considéré,

A k = aire du contour tracé à mi-épaisseur des parois.

1.1.2 Cas des sections pleines

On se ramène au cas précédent en remplaçant la section réelle par une section creuse équivalente d'épaisseur fictive vérifiant (on retient les notations de l'eurocode 2):


$$2c < t_{ef} < A/u$$

c = enrobage des barres longitudinales;

A = surface totale de la section délimitée par le périmètre extérieur, aires des parties creuses comprises ;

u = périmètre extérieur de la section ;

z_i = longueur de la paroi i

 A_k = aire délimitée par le feuillet moyen des parois (surface de la partie creuse comprise);

 u_k = périmètre du feuillet moyen du tube de section A_k ;

t_{ef} = l'épaisseur du tube fictif.

La contrainte tangente a pour expression :

$$\iota_{Ti} = \frac{T_{Ed}}{2 t_{ef} A_{k}}$$
 (6.26)

Commentaire

Le BAEL retient des épaisseurs de tube plus fines que l'eurocode 2. Exemple : pour une poutre de 60 cm de large et 120 cm de haut, le BAEL retient b/6 soit 10 cm, alors que l'eurocode 2 propose une valeur comprise entre 6 cm (2 fois un enrobage de 3 cm) et 20 cm = $((60 \times 120)/2(60 + 120))$.

Mais c'est le produit t.A $_k$ qui gouverne le cisaillement, ici, on a 0,20(0,40 × 1) = 0,08 à comparer à 0,10(1,10 × 0,50) = 0,055 soit 45 % de cisaillement en moins possible avec l'eurocode 2.

1.1.3 Cas des sections de forme complexe

Les sections de forme complexe (sections en T par exemple) sont décomposées en sections rectangulaires élémentaires creuses.

Il est d'usage de retenir la règle suivante (NF P 19-202-3 Éléments linéaires).

La résistance à la torsion est déterminée à l'état limite ultime conformément à l'article 6.3 de la norme NF EN 1992-1-1 avec son Annexe nationale française (NF P 18-711-1/NA), en considérant la section comme une section fermée à parois minces où l'équilibre est assuré par un flux de cisaillement.

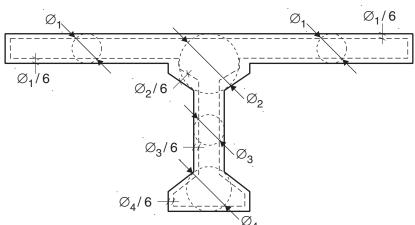


Fig. 2 : cas des sections complexes