LES MATÉRIAUX MICRO ET MÉSOPOREUX - CARACTÉRISATION -

Groupe Français des Zéolithes Ouvrage coordonné par Frédéric Thibault-Starzyk

chimie | matériaux

LES MATÉRIAUX MICRO ET MÉSOPOREUX – Caractérisation –

Groupe français des zéolithes

Ouvrage coordonné par Frédéric Thibault-Starzyk

17, avenue du Hoggar Parc d'activités de Courtabœuf, BP 112 91944 Les Ulis Cedex A, France

Extrait de la publication

ISBN : 2-86883- 713-1

Tous droits de traduction, d'adaptation et de reproduction par tous procédés, réservés pour tous pays. La loi du 11 mars 1957 n'autorisant, aux termes des alinéas 2 et 3 de l'article 41, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective », et d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (alinéa 1^{er} de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du code pénal.

© EDP Sciences 2004

Avant-propos

Les zéolithes sont des minéraux naturels ou synthétiques utilisés à grande échelle dans l'industrie chimique moderne, de la pétrochimie à l'agrochimie en passant par les détergents et la purification de l'eau. Le Groupe Français des Zéolithes (GFZ) est une association qui regroupe les scientifiques du monde francophone autour de ce sujet d'étude et de recherche commun. Les textes de base de la science des zéolithes sont tous en anglais, et il n'existe en français aucune introduction générale à cette discipline. Le manque de ce genre d'ouvrage rend inconfortable l'usage de la langue française comme grande langue scientifique; il est durement ressenti par la communauté, malgré la grande qualité et le renom des ouvrages publiés en anglais, notamment par l'Association Internationale des Zéolithes (IZA).

Le GFZ a donc décidé, il y a déjà quelques temps, de tirer parti de ses compétences et d'écrire le livre français des zéolithes et solides mésoporeux. Après l'avoir prévu comme un « Que Sais-Je », puis comme un livre de vulgarisation, nous avons voulu faire du livre du GFZ un outil pour les étudiants qui entrent dans nos laboratoires, en supposant qu'ils ne connaissent rien aux zéolithes, pour leur fournir de premières armes dans le domaine. Lors de la longue genèse de l'ouvrage, il est apparu nécessaire de le scinder en deux parties, l'une sur la description générale de la structure, de la synthèse et des propriétés des zéolithes, et l'autre sur les méthodes d'études et de caractérisation des zéolithes, rassemblant les conseils et les particularités pratiques de l'étude des zéolithes. Cette deuxième partie, qui constitue le présent volume, doit fournir à un public de chimistes généralistes (niveau licence ou maîtrise) les outils spécifiques pour aborder expérimentalement les zéolithes, comme un manuel d'introduction renvoyant si nécessaire vers une littérature plus spécialisée (les références sont ici des pistes bibliographiques plus qu'un état de l'art à un moment donné).

Cet ouvrage n'est donc, je l'espère, que le premier. Il nous reste à écrire celui traitant de la structure et des propriétés, en tirant parti de l'expérience durement acquise dans la préparation de ce premier tome, et en comptant sur la communauté des zéolithes pour nous faire part des erreurs et des omissions que nous y avons faites. Je tiens à remercier les collègues qui ont bien voulu contribuer à cet ouvrage ou à sa relecture, de leur travail comme de leur patience, et la Fondation St Nikon de son soutien. Le GFZ est une « société savante », mais sa réunion annuelle est aussi l'occasion de retrouver des amis, et j'espère que ce livre permettra d'en agrandir le cercle en intéressant aux zéolithes toujours plus de jeunes chercheurs.

> Frédéric Thibault-Starzyk Churchill College, Cambridge, mai 2004.

Avant-propos	1
Préface	11

,

ра	r les méthodes de diffraction	13
1.	Notions de diffraction	14
	1.1. Loi de Bragg	14
	1.2. Facteur de structure	15
2.	L'expérience de diffraction des rayons X	16
	2.1. Les sources de rayons X	16
	2.2. Les diffractomètres	18
З.	L'expérience de diffraction des neutrons	22
	3.1. Production des neutrons	22
	3.2. Comparaison rayons X – neutrons	24
4.	Applications de la diffraction à l'étude des monocristaux	25
	4.1. Conditions d'étude	25
	4.2. Détermination structurale, analyse de Fourier	27
5.	Utilisation de la diffraction pour l'étude des poudres	29
	5.1. Identification des phases	29
	5.2. Détermination des paramètres de maille. Indexation	30
	5.3. Enregistrement des intensités de diffraction (rayons X)	32
	5.4. Acquisition des données neutrons :	
	technique particulière dite de « temps de vol »	34

	5.5.	Diffraction et détermination structurale (rayons X)	35
	5.6.	Analyse Rietveld	36
6.	Quel	ques applications spécifiques de la diffraction des neutrons	38
	6.1.	Localisation d'atomes légers	38
	6.2.	Différenciation entre éléments	39
	6.3.	Détermination de structures magnétiques	40
7.	Diffra	action de poudre <i>in situ</i>	41
	7.1.	Rayonnement synchrotron	41
	7.2.	Diffraction de neutrons in situ	43
8.	Diffra	action des électrons	43
	8.1.	Principe	43
	8.2.	Quelques applications aux zéolithes	44
9.	Simu	lation et résolution de structure	45
	9.1.	Procédure DLS (Distance Least Squares)	46
	9.2.	Méthodes de recuit simulé	46
	9.3.	Packing Monte Carlo et minimisation d'énergie	46

2 Introduction à l'étude des zéolithes par spectroscopie infrarouge

pa	par spectroscopie infrarouge		
1.	Princ	ipe et mise en œuvre de la spectroscopie infrarouge	51
	1.1.	Rayonnement infrarouge	51
	1.2.	Interaction matière-rayonnement	52
	1.3.	Spectrométrie. Interféromètre	52
	1.4.	Limites et problèmes de la transformée de Fourier	54
	1.5.	Aspects techniques	55
	1.6.	Mise en œuvre	56
2.	Vibra	ations de structure des zéolithes	59
	2.1.	Bandes de structure	59
	2.2.	Substitution d'éléments dans la structure	61
З.	Étud	e de l'acidité des zéolithes	62
	3.1.	Mode expérimental	62
	3.2.	Site de Brønsted : le vibrateur OH	65
	3.3.	Molécules sondes	67

3

	3.4.	Sondes courantes d'acidité	72
	3.5.	Étude de la basicité des zéolithes	82
4.	Obse	ervation infrarouge du catalyseur en fonctionnement	82
	4.1.	Cellule réacteur : réflexion diffuse ou transmission?	84
	4.2.	Bâti de réactivité	84
	4.3.	Exemples d'applications aux zéolithes	85

et	des catalyseurs à base de zéolithes	91
1.	Développement de la RMN aux systèmes solides	91
2.	Introduction à la théorie de la RMN de l'état solide	93
	2.1. Interaction Zeeman : \hat{H}_{z}	93
	2.2. Interaction avec un champ radiofréquence : \hat{H}_{RF}	95
	2.3. Interaction dipolaire : \hat{H}_{D}	99
	2.4. Interaction quadrupolaire : \hat{H}_{Q}	101
	2.5. Déplacement chimique : \hat{H}_{CS}	103
	2.6. Couplage $J : \hat{H}_{\mathbf{J}}$ (interaction noyau-noyau indirecte)	105
	2.7. Influence des électrons célibataires	105
3.	Méthodes importantes pour la RMN de l'état solide	107
	3.1. Découplage hétéronucléaire	107
	3.2. Polarisation croisée (cross-polarization)	107
	3.3. Rotation à l'angle magique (technique MAS)	108
	3.4. Séquence de pulses multiples	110
	3.5. RMN à deux dimensions	110
4.	Techniques RMN pour l'étude des molécules adsorbées	113
	4.1. Mesure des déplacements chimiques	113
	4.2. Élargissement et anisotropie de déplacement chimique	113
	4.3. Effets d'échanges	114
5.	RMN-HR des noyaux lourds : structures des zéolithes	114
	5.1. RMN- ²⁹ Si des silicates	115
	5.2. RMN- ²⁹ Si des zéolithes	115
	5.3. RMN- ²⁷ AI des zéolithes	124

5.4. Autres noyaux lourds 133

5

6.	RMN	haute résolution et acidité des zéolithes	133
	6.1.	RMN- ¹ H	133
	6.2.	RMN de noyaux autres que ¹ H : molécules adsorbées	137
7.	RMN	en réseau rigide. Application à l'acidité de Brønsted	
	des s	solides	137
	7.1.	Méthode des moments	139
	7.2.	Simulation des spectres	140
8.	NMF	de molécules adsorbées physiquement (¹²⁹ Xe)	142
9.	Mob	lité moléculaire	146
	9.1.	Étapes élémentaires de migration moléculaire	146
	9.2.	Self-diffusion intracristalline	147
10.	Pers	pectives	149

à	l'étude des zéolithes	157
1.	Technique calorimétrique	157
	1.1. Calorimètres à flux de chaleur	158
	1.2. Calorimètre à flux gazeux	164
2.	Température d'adsorption	165
З.	Prétraitement de l'échantillon	165
4.	Interactions acide-base	166
	4.1. Molécules sondes	166
	4.2. Analyse d'une courbe calorimétrique	168
5.	Facteurs influençant l'acidité des zéolithes	171
	5.1. Influence de la topologie, taille des pores et cristallinité	171
	5.2. Influence du mode de synthèse et des modifications	
	chimiques	172
	5.3. Influence de l'échange cationique	172
	5.4. Influence du rapport Si/Al et de la désalumination	173
	5.5. Influence des substitutions isomorphiques	174
	5.6. Influence du vieillissement et de la formation de coke	175
6.	Perspectives	175

5	ur les	zéolithes	181
1.	Spéc	rificités de l'adsorption dans les milieux microporeux	181
	1.1.	Adsorption physique	181
	1.2.	Classification des molécules adsorbables	
		et des adsorbants selon Kiselev	182
	1.3.	Forces d'adsorption	183
	1.4.	Critères thermodynamiques de l'adsorption	185
2.	Adsc	prption en phase gazeuse	193
	2.1.	Classification des isothermes	193
	2.2.	Équation générale de l'isotherme	195
	2.3.	Équations des isothermes dans l'hypothèse	
		d'une homogénéité énergétique	195
	2.4.	Équations des isothermes prenant en compte	
		l'hétérogénéité énergétique	202
З.	Coad	dsorption en phase gazeuse	205
	3.1.	Notions générales	205
	3.2.	Théories en thermodynamique phénoménologique	206
4.	Pers	pectives	216

6	M	étho	des en température programmée	223
	1.	Tech	niques expérimentales	224
		1.1.	Appareillage	224
		1.2.	Détecteurs	225
		1.3.	Analyse expérimentale	228
		1.4.	Considérations expérimentales	229
	2.	Désc	prption en température programmée	231
		2.1.	Éléments de théorie	231
		2.2.	Application à la caractérisation des propriétés acides	
			des zéolithes	234

7

255

279 279

	2.3.	Application à la caractérisation des propriétés basiques	
		des zéolithes	238
	2.4.	Autres applications	239
3.	Rédu	iction en température programmée	239
	3.1.	Principe de la réduction en température programmée	241
	3.2.	Notions à savoir sur la TPR	241
	3.3.	Réduction de catalyseurs à base de zéolithe	244
	3.4.	Apports de la TPR	245
4.	Охус	lation en température programmée (TPO)	246
	4.1.	Oxydabilité	246
	4.2.	Caractérisation du coke	251

7 Modélisation et simulation numérique de l'adsorption dans les zéolithes

1.	Mode	élisation des systèmes zéolithiques	256
	1.1.	Approche ab initio	256
	1.2.	Approche semi-empirique classique	258
2.	Simu	lation numérique	261
	2.1.	Thermodynamique statistique numérique	261
	2.2.	Simulation de Monte Carlo	263
	2.3.	Simulation de dynamique moléculaire	266
	2.4.	Dynamique moléculaire quantique	268
	2.5.	Observables retenues	269

8 Évaluation du comportement des catalyseurs hétérogènes 1. Définition des caractéristiques principales de la réaction à étudier 9. Ob sin de l'équip second p sur l'alignentation

2.	Choix de l'équipement nécessaire pour l'ailmentation		
	en mélange réactionnel du réacteur	280	
3.	Sélection du réacteur et optimisation des conditions opératoires		
	3.1. Réacteurs catalytiques hétérogènes	282	

	3.2.	Cycle catalytique hétérogène	284
	3.3.	Diffusion et réaction dans un catalyseur	284
	3.4.	Détermination des vitesses de réaction.	
		Études cinétiques	293
	3.5.	Transfert de matière et réaction dans les zéolithes	296
	3.6.	Réacteurs catalytiques à lit fixe à fonctionnement	
		dynamique : évaluation des catalyseurs au laboratoire	297
	3.7.	Mécanismes des réactions catalytiques hétérogènes.	
		Déduction des équations de vitesse :	
		modèle Langmuir–Hinshelwood–Hougen–Watson	299
4.	Méth	ode d'analyse des produits de réaction	300
5.	Traitement des données expérimentales		

Préface

Il est difficile d'imaginer une meilleure occasion que l'étude des zéolithes pour présenter l'état actuel des techniques de caractérisation des matériaux et des surfaces. Souvant, au cours de l'apprentissage des méthodes de caractérisation avancées, l'élève se trouve arrêté dans son élan : il n'est plus ébloui par l'ingéniosité du principe physique de la méthode et il commence à trouver assez abstrait le résultat de sa manip. Il a appris comment mesurer une propriété précise, fut-elle une conductivité électrique ou thermique, un index de réfraction, une constante cinétique de diffusion ou réaction, mais il se demande à quoi peut bien servir la valeur qu'il vient de trouver. Les zéolithes, grâce aux corrélations étroites qui lient leur structure à leur propriétés, représentent des occasions de rêve pour mettre un corps et une âme autour d'un squelette de chiffres.

La structure ordonnée des silicates microporeux que sont les zéolithes a permis des applications spectaculaires des techniques de diffraction, vraie clé de voûte de notre connaissance de ces matériaux. Il est possible de localiser précisément tous les tétraèdres qui forment les architectures complexes des structures zéolithiques. Grâce à cela, la question « dessine-moi une zéolithe » ne nous trouve pas impréparés et les résultats de toute autre technique de caractérisation peuvent être visualisés d'une façon particulièrement efficace.

De plus, les applications des zéolithes sont une présence tellement tangible dans l'industrie et la vie quotidienne qu'il est aussi facile de répondre sans monotonie à l'autre question redoutable : « pourquoi nous faisons cela ? »

L'ambition du Groupe Français des Zéolithes, en confiant aux presses ce petit ouvrage sur les méthodes de caractérisation des matériaux microporeux, est multiple : d'abord donner à ceux qui travaillent déjà dans le domaine des zéolithes l'occasion d'une mise à niveau sur les développements récents dans les bases instrumentales de leur métier, mais aussi donner à ceux qui ne fréquentent pas tous les jours les zéolithes une occasion pour saisir la richesse de compréhension qui dérive de la synergie entre techniques de caractérisation différentes et complémentaires. On retrouve, au fond, l'ambition profonde du groupe Français des Zéolithes : être un terrain de rencontre pour les ouvriers de techniques différentes, issus des horizons variés de la chimie, de la physique et des sciences de la Terre.

> Francesco di Renzo Président du Groupe Français des Zéolithes

Analyse structurale des matériaux microporeux par les méthodes de diffraction

Thierry Loiseau¹ et Caroline Mellot-Draznieks¹

La compréhension des matériaux est fortement associée à l'évolution des techniques de caractérisation et, dans le cas des solides cristallisés, les méthodes de diffraction ont apporté des informations essentielles concernant l'arrangement périodique tridimensionnel des atomes. Contrairement aux techniques spectroscopiques qui sondent principalement l'environnement local d'un atome, la diffraction renseigne sur l'ordre atomique à longue distance en exploitant le caractère ondulatoire d'un rayonnement (rayons X, électrons, neutrons) interagissant avec la matière. L'échantillon solide doit présenter une bonne cristallinité ou un état ordonné, c'est-à-dire que chaque atome ou molécule est disposé d'une certaine manière dans le cristal et cet arrangement se répète à l'identique dans les trois dimensions de l'espace. Cette technique exclut du champ d'étude tous les composés faiblement cristallisés ou amorphes pour lesquels aucun signal ne pourra être détecté. La localisation précise des atomes ainsi que les distances interatomiques et angles de liaison sont obtenus presqu'exclusivement à l'aide de la diffraction sur monocristal ou sur poudre.

Ce chapitre est consacré à la description des méthodes de diffraction, conjointement à l'utilisation de techniques de simulation comme outil d'aide à la résolution structurale. La mise en œuvre et le traitement des données seront abordés. Après un rappel du phénomène de diffraction, les trois sources de rayonnement (rayons X, neutrons et électrons) ainsi que leurs applications spécifiques sont présentées ; l'emploi de techniques de simulation complémentaires est décrit à la fin de ce chapitre. On notera que les notions de symétrie dans les cristaux (systèmes cristallins, modes de réseau, groupes ponctuels, groupes spatiaux) ne sont pas présentés dans cette partie.

¹ Institut Lavoisier, UMR CNRS 8637, Université de Versailles Saint-Quentin, 45, avenue des États-Unis, 78035 Versailles Cedex, France

1. Notions de diffraction

1.1. Loi de Bragg

Le cristal peut se décrire comme étant un empilement de plans d'atomes ayant un effet de miroir vis-à-vis des rayons X. Dans le cas d'un miroir classique, la lumière est réfléchie quelle que soit la valeur de l'angle du faisceau incident. Cette observation n'est plus vérifiée pour le phénomène de diffraction : compte tenu de la similarité entre la longueur d'onde et les distances interatomiques, la réflexion n'a lieu que pour certaines orientations des plans atomiques du cristal. Cette condition est définie par la loi de Bragg. La figure 1.1 représente un succession de plans d'atomes réfléchissant un faisceau de rayons X. Si d_{hkl} est la distance interplanaire (les indices hkl se rapportant aux indices de Miller du plan considéré) et θ l'angle du faisceau incident, la différence de marche du faisceau A par rapport au faisceau B est proportionnelle à deux fois la distance x ou $2d_{hkl} \sin \theta$. Le faisceau réfléchi sera en phase si la différence de marche est proportionnelle à longueur d'onde λ . Il y aura alors création d'interférences constructives et un signal pourra être détecté. La loi de Bragg s'écrit :

$$2d_{hkl}\sin\theta = n\lambda$$

Il est à noter que les réflexions d'ordre élevé (n > 1) ne pourront pas se distinguer de celles provenant des plans d'indices (nh nk nl) et on utilise la relation de Bragg sous la forme :

$$2d_{hkl}\sin\theta = \lambda$$

Pour une valeur fixe de λ (onde monochromatique) et une valeur donnée de θ , on peut donc déduire d_{hkl} qui est directement fonction des indices de Miller du plan (*hkl*) considéré et des paramètres de la maille. Par exemple, en symétrie

FIG. 1.1 – Réflexion de Bragg à partir de plans atomiques séparés par la distance d_{hhl} .

cubique, d_{hkl} peut s'écrire par la relation :

$$d_{hkl} = a / (h^2 + k^2 + l^2)^{1/2}$$

À partir de la connaissance de la position de plusieurs plans réticulaires (*hkl*) et de leur indexation, il sera possible de déduire la valeur des paramètres de maille et ainsi la nature du système cristallin du solide considéré.

1.2. Facteur de structure

Une fois l'indexation des plans réticulaires réalisée, la mesure de l'intensité dépend de la nature et la position des atomes composant chaque plan. L'intensité I_{hhl} d'un plan (*hhl*) est reliée au facteur de structure F_{hhl} par la relation :

$$I_{hkl} = KF_{hkl}^2$$

où *K* représente les contributions du facteur d'échelle, du facteur de correction de Lorentz (relative à la géométrie du mode de collecte), du facteur de correction de polarisation (tenant compte de la polarisation du faisceau X), du facteur de température (dû à l'agitation thermique des atomes autour de leur position d'équilibre), du facteur de multiplicité (dû aux symétries présentes dans le cristal) et du facteur d'absorption des rayons X par la matière.

Le facteur de structure F_{hkl} dépend à la fois de la position des atomes et du facteur de diffusion f_j . Il est donné par l'expression générale pour j atomes dans la maille :

$$F_{hkl} = \sum_{j} f_j \,\mathrm{e}^{2\pi\mathrm{i}(hx_j + ky_j + lz_j)}$$

Le facteur f_j correspond au facteur de diffusion du $j^{ième}$ atome ayant les coordonnées spatiales x_j , y_j et z_j . Cette valeur est relative à la nature des éléments présents dans la maille. Elle traduit l'efficacité de l'interaction entre les rayons X et les électrons et est fonction du numéro atomique ($f_j = Z$ pour sin $\theta/\lambda = 0$). Par conséquent, les éléments légers tels que l'hydrogène ou le lithium contribuent peu à l'intensité diffractée et l'appréciation de la nature de deux éléments voisins du tableau périodique sera difficile. De plus, le facteur de diffusion suit une loi de variation en sin θ/λ qui implique que l'intensité des pics de diffraction diminue de façon significative avec l'augmentation de l'angle de diffraction 2 θ .

La connaissance des facteurs de structure de chaque plan permet d'accéder à la distribution de la densité électronique dans la maille aux points x, y, z. La densité électronique $\rho(x, y, z)$ est donnée par la somme de Fourier :

$$\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} e^{-2\pi i (hx+ky+lz)}$$

où V est le volume de maille.

Elle correspond à la transformée de Fourier des facteurs de structure. Ainsi, si les facteurs de structure sont connus, il est alors possible de calculer la densité

électronique et ensuite les positions des atomes dans une maille. Cependant, on ne mesure que l'intensité diffractée $I_{hkl} \propto F_{hkl}^2$ et on peut certes obtenir $|F_{hkl}|$ mais on perd l'information de son signe. Il s'agit du problème de la phase qui constitue la difficulté principale pour la résolution des structures. La solution de ce problème est maintenant gérée par des méthodes informatiques qui seront décrites plus loin (voir § 4).

2. L'expérience de diffraction des rayons X

2.1. Les sources de rayons X

Les rayons X découverts en 1895 par le physicien allemand Röntgen correspondent à une radiation électromagnétique avec une longueur d'onde de l'ordre de 1 Å. Plusieurs sources de rayons X sont actuellement disponibles pour des expériences de diffraction : le tube à rayons X (la source la plus répandue dans les laboratoires), l'anode tournante et le rayonnement synchrotron. Ce dernier est produit à l'aide d'un accélérateur de particules et nécessite l'utilisation d'installations « grands instruments » demandant une très importante infrastructure.

2.1.1. Tube à rayons X

Les rayons X sont normalement générés lors de la collision de particules chargées (par exemple : électrons) avec la matière. Dans le schéma du tube à rayons X (figure 1.2), le chauffage d'un filament métallique (tungstène) conduit à l'émission d'électrons qui sont ensuite accélérés en appliquant une forte différence de potentiel (10 à 50 kV) entre le filament et une cible métallique (l'anode) dans un tube de verre sous vide. Lors de la rencontre avec l'anode, l'énergie des électrons est suffisamment grande pour éjecter des électrons de cœur (1s) du métal vers des états excités. Des électrons des couches intermédiaires (2p, 3p) vont alors occuper les niveaux laissés vacants et le retour à l'état fondamental s'accompagne de la formation de rayonnement X. L'anode émet une radiation blanche comprenant des raies fines et intenses de type K α et K β correspondant respectivement à la relaxation des électrons de la couche L (2p) et M (3p) vers la couche de cœur K (1s). La longueur d'onde de ces radiations est fonction du métal cible utilisé. Elle est par exemple de 1,54178 Å pour le cuivre (Cu Kα) et 0,71069 Å pour le molybdène (Mo K α). Ces raies sont en fait des doublets K α_1 + K α_2 et K β_1 + K β_2 qui ne sont pas résolus. On utilise en général la radiation Ka, la plus intense; l'autre radiation K β et une partie de la radiation blanche sont alors filtrées à l'aide d'un film mince constitué par un métal de numéro atomique « Z-1 » (par exemple : nickel pour le rayonnement cuivre, zirconium pour le molybdène). Dans certains cas, l'usage d'un monochromateur permet de résoudre le doublet Ka et de n'utiliser que le rayonnement K α_1 (le plus intense). Le bombardement des électrons entraîne un échauffement très important de l'anode et celle-ci est refroidie en permanence généralement à l'aide d'un circuit d'eau. En effet, seule une faible partie de l'énergie des électrons est convertie en rayonnement X. Les rayons X s'échappent du tube

FIG. 1.2 – Schéma d'un tube de rayons X scellé.

par l'intermédiaire de fenêtres en béryllium (métal stable à l'air ayant le numéro atomique le plus petit et par conséquent le plus transparent aux rayons X).

Les tubes de rayons X conventionnels admettent des puissances comprises entre 2 et 3 kW, l'intensité étant de l'ordre de plusieurs dizaines de mA. Typiquement, on travaille avec des tensions d'accélération de 50 kV et une intensité de 40 mA. À l'origine, les tubes étaient fabriqués en verre et on trouve maintenant une nouvelle technologie de tubes « céramiques » qui devrait assurer une plus longue longévité et une meilleure homogénéité du faisceau RX émis. Ceci vient du fait que l'usinage des céramiques est plus aisé et plus reproductible que celui des verres.

2.1.2. Anode tournante

L'anode tournante constitue une seconde source de rayons X plus puissante (18 kW) basée sur le même principe que celui rencontré dans le tube sous vide. La quantité de photons émis par les tubes de rayons X trouve très rapidement sa limite non pas par la puissance des générateurs de courant mais par l'accroissement de la température observée lors du bombardement des électrons sur l'anode. Il s'avère que, même si on refroidit considérablement l'anode métallique, l'augmentation de l'intensité ou du nombre d'électrons va entraîner à terme la fusion de celle-ci. Une autre possibilité a donc été de faire tourner à très haute vitesse (6000 tours/min) l'anode de manière à ce que la partie bombardée ne soit plus constamment en contact avec le flux d'électrons incidents. Une partie de l'anode subit le bombardement des électrons durant un temps assez court puis, pendant le reste de sa période de rotation, elle se refroidit. Même si le principe de cette anode reste simple, il pose de nombreux problèmes technologiques plus difficiles à maîtriser (très grande précision de la vitesse de rotation de l'anode, problèmes de vide, d'homogénéité du faisceau de rayons X) et nécessite une maintenance beaucoup plus importante que celle des tubes conventionnels induisant un coût plus élevé. Par conséquent l'usage de générateurs à anode tournante est peu répandu dans les laboratoires.

Le terme d'adsorption exprime la compétition d'adsorption sur les sites libres et constitue la principale différence pour une équation homogène : $r = (p_A - p_B/K)$. Il comprend toujours le terme unitaire et est élevé à une puissance supérieure à 1 si l'étape déterminant la vitesse est une étape en surface multi-moléculaire ; la valeur de la puissance est égale au nombre de sites actifs présents dans l'étape déterminant la vitesse. Ce terme devient égal à 1 dans des conditions de très faibles pressions en réactifs.

- En présence d'un gaz inerte ou d'un poison qui s'adsorbe de façon *réversible* sur le catalyseur : Terme d'adsorption $\equiv (1 + ... + k_{in} p_{in})$.
- En présence d'un poison qui s'adsorbe de façon *irréversible* sur le catalyseur : Terme cinétique $\equiv k \times ... \times (L - F)$ (où *F* est le nombre de sites désactivés).

4. Méthode d'analyse des produits de réaction

Le choix de l'équipement d'analyse correct constitue un point vital pour le bon fonctionnement d'une unité de tests catalytiques. À ce propos, voici quelques idées très générales :

- la plupart des articles publiés en catalyse hétérogène font référence à l'analyse des réactifs comme des produits de réaction par chromatographie en phase gazeuse (GC);
- la majorité des équipements font appel aux colonnes capillaires, plus performantes et stables;
- les deux systèmes de détection les plus fréquents sont le détecteur à ionisation de flamme (FID, détection des hydrocarbures) et le détecteur par conductivité thermique et pont de Wheatstone (détection du CO₂, oxygène, azote, CO...).

L'introduction des échantillons à analyser par GC se fait par injection directe avec une microseringue ou bien à l'aide d'une vanne d'échantillonnage à boucle qui constitue le volume à injecter (une vanne à six points est souvent utilisée).

Dans une configuration classique, les effluents du réacteur passent par une vanne de réglage de débit et sont dirigés vers le chromatographe. Si un détecteur de conductivité thermique est utilisé pour analyser un mélange où la vapeur d'eau est présente en quantités plutôt importantes (typiquement au-dessus de 1 000 ppm), un piège froid (carboglace, par exemple) doit être installé avant le détecteur, de façon à condenser l'eau.

Pour les systèmes analytiques plus complexes, on peut utiliser des GC munis de plusieurs colonnes et avec plus d'un détecteur. Dans ce cas, un système multivanne est normalement utilisé : par exemple, vanne d'échantillonnage plus vanne pour la sélection d'une colonne (par exemple, une vanne à dix portes permet d'effectuer le *back-flush* sur une des colonnes qui est « en repos »).

Pour étudier des réactions dont les produits de réaction sont liquides à la température ambiante, on peut les condenser après le réacteur et les faire analyser à la fin de l'essai. Cette procédure permet d'avoir une composition intégrale des produits de réaction. Il faut alors combiner cette analyse avec l'analyse des effluents gazeux, non condensables.

Une caractéristique de l'utilisation des techniques chromatographiqes est leur fonctionnement discontinu. Très souvent, le temps d'une analyse atteint plusieurs minutes, voire dizaines de minutes. Pour obtenir plus d'information sur un système catalytique, on peut utiliser une vanne à plusieurs boucles (des vannes à 16 boucles d'échantillonnage sont disponibles), de façon à recueillir les échantillons qui seront injectés et analysés plus tard. Cette procédure est particulièrement adaptée, par exemple, à l'étude de catalyseurs qui présentent une forte désactivation dans les premiers moments de l'essai (par exemple, le craquage d'alcanes sur les zéolithes). Dans le cas où il y a des produits condensables, tout le système de transfert doit être soigneusement chauffé.

D'autres systèmes analytiques comme les détecteurs de masse (pour des composés présents en très faible quantité), la chimioluminescence (détection des oxydes d'azote), la spectroscopie infrarouge, sont souvent utilisés.

5. Traitement des données expérimentales

Les conditions opératoires seront choisies avec soin pour obtenir, à partir des résultats expérimentaux, des données d'activité, de sélectivité et de stabilité.

Le calcul des quantités de réactifs et produits de réaction sera effectué à partir des données opératoires et analytiques. Le calcul des conversions (fraction de réactif de référence qui est transformé) et des sélectivités (fraction de réactif transformé en un produit donné) sera alors possible.

L'application des équations bilan conduira au calcul des vitesses de réaction, des énergies d'activation et d'autres paramètres cinétiques, à partir des valeurs de pression partielle (ou concentration) et de débit molaire des réactifs et produits de réaction, de température, de la masse de catalyseur et d'autres données sur le système étudié (enthalpie de réaction, chaleur spécifique des différents composants, aire d'échange de chaleur, pour les réacteurs non isothermes).

Du point de vue pratique, on travaille souvent en conditions isothermes (soit parce qu'il s'agit des réactions à faible ou moyen effet thermique, soit parce qu'on travaille à faibles conversions, soit encore parce qu'on utilise les réactifs dilués dans un vecteur inerte (azote ou hélium pour les réactions en phase gaz, par exemple), et faible chute de pression. Dans ce cas, le calcul des paramètres cinétiques recherchés ne fait appel qu'aux bilans massiques.

L'observation stricte des différents paramètres opératoires permettra aussi travailler dans les conditions de fonctionnement idéal des réacteurs (mentionnés plus haut) et en l'absence de toute limitation diffusionnelle.